25 research outputs found

    Novel hybridization- and tag-based error-corrected method for sensitive ctDNA mutation detection using ion semiconductor sequencing

    Get PDF
    Circulating tumor DNA (ctDNA) analysis has emerged as a clinically useful tool for cancer diagnostics and treatment monitoring. However, ctDNA detection is complicated by low DNA concentrations and technical challenges. Here we describe our newly developed sensitive method for ctDNA detection on the Ion Torrent sequencing platform, which we call HYbridization- and Tag-based Error-Corrected sequencing (HYTEC-seq). This method combines hybridization-based capture with molecular tags, and the novel variant caller PlasmaMutationDetector2 to eliminate background errors. We describe the validation of HYTEC-seq using control samples with known mutations, demonstrating an analytical sensitivity down to 0.1% at > 99.99% specificity. Furthermore, to demonstrate the utility of this method in a clinical setting, we analyzed plasma samples from 44 patients with advanced pancreatic cancer, revealing mutations in 57% of the patients at allele frequencies as low as 0.23%.publishedVersio

    High-Grade Cervical Intraepithelial Neoplasia (CIN) Associates with Increased Proliferation and Attenuated Immune Signaling

    Get PDF
    Implementation of high-risk human papilloma virus (HPV) screening and the increasing proportion of HPV vaccinated women in the screening program will reduce the percentage of HPV positive women with oncogenic potential. In search of more specific markers to identify women with high risk of cancer development, we used RNA sequencing to compare the transcriptomic immune-profile of 13 lesions with cervical intraepithelial neoplasia grade 3 (CIN3) or adenocarcinoma in situ (AIS) and 14 normal biopsies from women with detected HPV infections. In CIN3/AIS lesions as compared to normal tissue, 27 differential expressed genes were identified. Transcriptomic analysis revealed significantly higher expression of a number of genes related to proliferation, (CDKN2A, MELK, CDK1, MKI67, CCNB2, BUB1, FOXM1, CDKN3), but significantly lower expression of genes related to a favorable immune response (NCAM1, ARG1, CD160, IL18, CX3CL1). Compared to the RNA sequencing results, good correlation was achieved with relative quantitative PCR analysis for NCAM1 and CDKN2A. Quantification of NCAM1 positive cells with immunohistochemistry showed epithelial reduction of NCAM1 in CIN3/AIS lesions. In conclusion, NCAM1 and CDKN2A are two promising candidates to distinguish whether women are at high risk of developing cervical cancer and in need of frequent follow-up.publishedVersio

    The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer

    Get PDF
    Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping

    Extracellular vesicles as a potential source of tumor-derived DNA in advanced pancreatic cancer.

    No full text
    Tumor-derived extracellular vesicles (EVs) are reported to contain nucleic acids, including DNA. Several studies have highlighted the potential of EV-derived DNA (evDNA) as a circulating biomarker, even demonstrating that evDNA can outperform cell-free DNA (cfDNA) in terms of sensitivity. Here, we evaluated EVs as a potential source of tumor-derived DNA in patients with advanced pancreatic cancer. evDNA from both DNase-treated and untreated EV samples was analyzed to determine whether the DNA was primarily located internally or outside (surface-bound) the EVs. To assess whether methodology affected the results, we isolated EVs using four different methods for small EV isolation and differential centrifugation for isolating large EVs. Our results indicated that the DNA content of EVs was significantly less than the cfDNA content isolated from the same plasma volume (p < 0.001). Most of the detected evDNA was also located on the outside of the vesicles. Furthermore, the fraction of tumor-derived DNA in EVs was similar to that found in cfDNA. In conclusion, our results suggest that quantification of evDNA, as a source of tumor-derived DNA, does not add information to that obtained with cfDNA, at least not in patients with advanced pancreatic cancer

    Single-cell mRNA profiling reveals transcriptional heterogeneity among pancreatic circulating tumour cells

    No full text
    Abstract Background Single-cell mRNA profiling of circulating tumour cells may contribute to a better understanding of the biology of these cells and their role in the metastatic process. In addition, such analyses may reveal new knowledge about the mechanisms underlying chemotherapy resistance and tumour progression in patients with cancer. Methods Single circulating tumour cells were isolated from patients with locally advanced or metastatic pancreatic cancer with immuno-magnetic depletion and immuno-fluorescence microscopy. mRNA expression was analysed with single-cell multiplex RT-qPCR. Hierarchical clustering and principal component analysis were performed to identify expression patterns. Results Circulating tumour cells were detected in 33 of 56 (59%) examined blood samples. Single-cell mRNA profiling of intact isolated circulating tumour cells revealed both epithelial-like and mesenchymal-like subpopulations, which were distinct from leucocytes. The profiled circulating tumour cells also expressed elevated levels of stem cell markers, and the extracellular matrix protein, SPARC. The expression of SPARC might correspond to an epithelial-mesenchymal transition in pancreatic circulating tumour cells. Conclusion The analysis of single pancreatic circulating tumour cells identified distinct subpopulations and revealed elevated expression of transcripts relevant to the dissemination of circulating tumour cells to distant organ sites

    Liquid Biopsies in Solid Cancers: Implementation in a Nordic Healthcare System

    Get PDF
    Liquid biopsies have emerged as a potential new diagnostic tool, providing detailed information relevant for characterization and treatment of solid cancers. We here present an overview of current evidence supporting the clinical relevance of liquid biopsy assessments. We also discuss the implementation of liquid biopsies in clinical studies and their current and future clinical role, with a special reference to the Nordic healthcare systems. Our considerations are restricted to the most established liquid biopsy specimens: circulating tumor DNA (ctDNA) and circulating tumor cells (CTC). Both ctDNA and CTCs have been used for prognostic stratification, treatment choices, and treatment monitoring in solid cancers. Several recent publications also support the role of ctDNA in early cancer detection. ctDNA seems to provide more robust clinically relevant information in general, whereas CTCs have the potential to answer more basic questions related to cancer biology and metastasis. Epidermal growth factor receptor-directed treatment of non-small-cell lung cancer represents a clinical setting where ctDNA already has entered the clinic. The role of liquid biopsies in treatment decisions, standardization of methods, diagnostic performance and the need for further research, as well as cost and regulatory issues were identified as factors that influence further integration in the clinic. In conclusion, substantial evidence supports the clinical utility of liquid biopsies in cancer diagnostics, but further research is still required for a more general application in clinical practice.publishedVersio

    Novel hybridization- and tag-based error-corrected method for sensitive ctDNA mutation detection using ion semiconductor sequencing

    Get PDF
    Circulating tumor DNA (ctDNA) analysis has emerged as a clinically useful tool for cancer diagnostics and treatment monitoring. However, ctDNA detection is complicated by low DNA concentrations and technical challenges. Here we describe our newly developed sensitive method for ctDNA detection on the Ion Torrent sequencing platform, which we call HYbridization- and Tag-based Error-Corrected sequencing (HYTEC-seq). This method combines hybridization-based capture with molecular tags, and the novel variant caller PlasmaMutationDetector2 to eliminate background errors. We describe the validation of HYTEC-seq using control samples with known mutations, demonstrating an analytical sensitivity down to 0.1% at > 99.99% specificity. Furthermore, to demonstrate the utility of this method in a clinical setting, we analyzed plasma samples from 44 patients with advanced pancreatic cancer, revealing mutations in 57% of the patients at allele frequencies as low as 0.23%

    Fragment size and level of cell-free DNA provide prognostic information in patients with advanced pancreatic cancer

    No full text
    Abstract Background It was recently demonstrated that the size of cell-free DNA (cfDNA) fragments that originates from tumor cells are shorter than cfDNA fragments that originates from non-malignant cells. We investigated whether cfDNA fragment size and cfDNA levels might have prognostic value in patients with advanced pancreatic cancer. Methods Blood samples were obtained from patients with advanced pancreatic cancer, before (n = 61) initiation of chemotherapy and after the first cycle of chemotherapy (n = 39). Samples were separated with density centrifugation and plasma DNA was isolated. Mode cfDNA fragment size and cfDNA levels were then determined using a 2100 Bioanalyzer. A cohort of partially age-matched healthy volunteers (n = 28) constituted the control group. Results Both a pre-treatment cfDNA fragment size of ≤ 167 bp (mode) and high pre-treatment cfDNA levels were associated with shorter progression-free survival (PFS) (p = 0.002 and p < 0.001, respectively) and overall survival (OS) (p = 0.001 and p = 0.001, respectively). Furthermore, multivariable Cox regression analyses demonstrated that pre-treatment cfDNA levels could independently predict prognosis for both PFS (HR = 3.049, p = 0.005) and OS (HR = 2.236, p = 0.028). Conclusion This study demonstrates that cfDNA fragment size and cfDNA levels can be used to predict disease outcome in patients with advanced pancreatic cancer. The described approach, using a rapid, economic and simple test to reveal prognostic information, has potential for future treatment stratification and monitoring
    corecore