100 research outputs found
Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt
Citation: Michael, M., Phebus, R. K., & Schmidt, K. A. (2015). Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt. Food Science & Nutrition, 3(1), 48-55. doi:10.1002/fsn3.189A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5% plant extract, 0.25% SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis, Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5 degrees C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage
Strategies to augment non-immune system based defence mechanisms against gastrointestinal diseases in pigs
AbstractOur study addresses the first two weeks of the weaning period of piglets during which stressful physiological and environmental conditions experienced by the animals can promote the proliferation of pathogens in the digestive tract. The aim of the study was to identify new feeding strategies that result in boosting the gastrointestinal tract (GIT) microbiota of piglets and improve growth performance, reducing the negative impact of weaning. In order to identify a new synbiotic combination, 12 new putative probiotic strains of Bifidobacterium spp. and three non-digestible oligosaccharides [NDO] were screened in newly weaned piglets. The ability to increase the level of autochthonous bifidobacteria and improve growth performance were assessed. Bifidobacteria strains with a similar ability to develop in the hindgut showed a different effect on piglet performance depending on the dose in which they were provided. Our data support the idea that the presence of fructo-oligosaccharides would stimulate the occurrence of bifidobacteria in the caecum. It was shown that dietary intake of nitrate can generate salivary nitrite, which in turn is acidified in the stomach and could have antimicrobial activity against swallowed pathogens. The efficacy of the resulting synbiotic formula was improved by adding nitrate as antimicrobial. To enhance probiotic survival during gastric transit, a novel technology of microencapsulation was developed and applied to bacteria. The final synbiotic, containing the strain RA 18 of Bifidobacterium animalis subsp. lactis [1011cfu/day], the prebiotic Actilight® [4% of the diet], and nitrate [150mg KNO3/kg feed/day] was tested in organic weaned piglets reared under field conditions. Results show that the strain Ra 18 had a probiotic effect in organic weaned piglets, as it colonized and remained detectable in faecal samples until two weeks after addition. The use of our synbiotic formula improved weight gain, feed efficiency and health status of the weaned piglets
Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes
Phytophthora infestans is the causal agent of late blight in potato. The Mexican species Solanum demissum is well known as a good resistance source. Among the 11 R gene differentials, which were introgressed from S. demissum, especially R8 and R9 differentials showed broad spectrum resistance both under laboratory and under field conditions. In order to gather more information about the resistance of the R8 and R9 differentials, F1 and BC1 populations were made by crossing Mastenbroek (Ma) R8 and R9 clones to susceptible plants. Parents and offspring plants were examined for their pathogen recognition specificities using agroinfiltration with known Avr genes, detached leaf assays (DLA) with selected isolates, and gene-specific markers. An important observation was the discrepancy between DLA and field trial results for Pi isolate IPO-C in all F1 and BC1 populations, so therefore also field trial results were included in our characterization. It was shown that in MaR8 and MaR9, respectively, at least four (R3a, R3b, R4, and R8) and seven (R1, Rpi-abpt1, R3a, R3b, R4, R8, R9) R genes were present. Analysis of MaR8 and MaR9 offspring plants, that contained different combinations of multiple resistance genes, showed that R gene stacking contributed to the Pi recognition spectrum. Also, using a Pi virulence monitoring system in the field, it was shown that stacking of multiple R genes strongly delayed the onset of late blight symptoms. The contribution of R8 to this delay was remarkable since a plant that contained only the R8 resistance gene still conferred a delay similar to plants with multiple resistance genes, like, e.g., cv Sarpo Mira. Using this “de-stacking” approach, many R gene combinations can be made and tested in order to select broad spectrum R gene stacks that potentially provide enhanced durability for future application in new late blight resistant varieties
Tensile and fatigue behaviors of polymers for automotive applications
An experimental study was conducted on tensile and fatigue behaviors of two unreinforced polymers and two short glass fiber reinforced polymer composites. A number of effects including anisotropy, strain rate and temperature on tensile behavior was investigated. Fatigue behavior was evaluated with respect to effects of mold flow direction, temperature, mean stress, and stress concentration. Effect of mold flow direction on both tensile and fatigue behaviors of unreinforced materials was found to be negligible, while it was significant for reinforced materials. Tsai-Hill criterion commonly used for continuous fiber composites was used to predict the off-axis fatigue strengths of short fiber reinforced materials. Effect of strain rate on tensile properties was found to be significant for all materials. Test temperature also influenced tensile and fatigue behaviors of both unreinforced and reinforced materials. Mathematical equations were developed to represent variations of tensile properties with both temperature and strain rate. Walker equation with a mean stress correction parameter is proposed to correct for the effect of mean stress. Effect of stress concentration combined with mold flow direction and mean stress was also investigated and Neuber\u27s rule resulted in accurate estimation of fatigue life
Effects of mean stress and stress concentration on fatigue behavior of short fiber reinforced polymer composites
An experimental study was conducted to evaluate the effect of mean stress on fatigue behavior of two short glass fiber reinforced thermoplastic composites and the effect of stress concentration on fatigue behavior of an unreinforced and a short glass fiber reinforced thermoplastic. Load-controlled fatigue tests were conducted on unnotched (smooth) specimens at R ratios of -1, 0.1, and 0.3 in different mold flow directions or fiber orientations and at a range of temperatures between -40 and 125 °C. Effect of mean stress on fatigue life was found to be significant at all temperatures. Several mean stress parameters including modified Goodman, Walker, and Smith-Watson-Topper were evaluated for their ability to correlate mean stress data. A general fatigue life prediction model was also used to account for the effect of mean stress, temperature, and fiber orientation. Notched fatigue tests of an unreinforced polymer and a short glass fiber thermoplastic composite were also conducted using plate type specimens with a central circular hole and with or without the presence of mean stress. Effect of stress concentration was found to be considerable, with or without mean stress and in both the longitudinal and transverse directions. The commonly used Neuber\u27s rule for metallic materials, nonlinear finite element analysis, as well as critical distance approaches were utilized for notch deformation and fatigue life analyses
- …