17 research outputs found

    Impact of electronic fluctuations and their description on the exciton dynamics in the light-harvesting complex PE545

    Get PDF
    Temperature-dependent fluctuations of both site energies and electronic couplings are known to affect the excitation energy transfer in light-harvesting complexes. Environment effects on such fluctuations as well as possible spatial correlations among them are investigated here in the PE545 complex from cryptophyte algae using ensemble-averaged wave packet dynamics to extract the exciton dynamics. This strategy directly uses the time-dependent fluctuations of the system Hamiltonian, as described by quantum mechanics/molecular mechanics calculations performed along a classical MD trajectory. Neither the fluctuations in the couplings nor spatial correlations including cross-correlations between site energies and couplings are found to be important in the exciton dynamics of the complex. This finding does not change if a polarizable embedding is used instead of its electrostatic counterpart. The impact of variations in spectral densities and screening of excitonic couplings based on the electrostatic and polarizable embeddings are discussed as well

    Relation between Dephasing Time and Energy Gap Fluctuations in Biomolecular Systems

    Get PDF
    Excitation energy and charge transfer are fundamental processes in biological systems. Because of their quantum nature, the effect of dephasing on these processes is of interest especially when trying to understand their efficiency. Moreover, recent experiments have shown quantum coherences in such systems. As a first step toward a better understanding, we studied the relationship between dephasing time and energy gap fluctuations of the individual molecular subunits. A larger set of molecular simulations has been investigated to shed light on this dependence. This set includes bacterio-chlorophylls in Fenna–Matthews–Olson complexes, the PE545 aggregate, the LH2 complexes, DNA, photolyase, and cryptochromes. For the individual molecular subunits of these aggregates it has been confirmed quantitatively that an inverse proportionality exists between dephasing time and average gap energy fluctuation. However, for entire complexes including the respective intermolecular couplings, such a relation still needs to be verified

    Impact of Electronic Fluctuations and Their Description on the Exciton Dynamics in the Light-Harvesting Complex PE545

    No full text
    Temperature-dependent fluctuations of both site energies and electronic couplings are known to affect the excitation energy transfer in light-harvesting complexes. Environment effects on such fluctuations as well as possible spatial correlations among them are investigated here in the PE545 complex from cryptophyte algae using ensemble-averaged wave packet dynamics to extract the exciton dynamics. This strategy directly uses the time-dependent fluctuations of the system Hamiltonian, as described by quantum mechanics/molecular mechanics calculations performed along a classical MD trajectory. Neither the fluctuations in the couplings nor spatial correlations including cross-correlations between site energies and couplings are found to be important in the exciton dynamics of the complex. This finding does not change if a polarizable embedding is used instead of its electrostatic counterpart. The impact of variations in spectral densities and screening of excitonic couplings based on the electrostatic and polarizable embeddings are discussed as well. (Graph Presented)

    Impact of electronic fluctuations and their description on the exciton dynamics in the light-harvesting complex PE545

    No full text
    Temperature-dependent fluctuations of both site energies and electronic couplings are known to affect the excitation energy transfer in light-harvesting complexes. Environment effects on such fluctuations as well as possible spatial correlations among them are investigated here in the PE545 complex from cryptophyte algae using ensemble-averaged wave packet dynamics to extract the exciton dynamics. This strategy directly uses the time-dependent fluctuations of the system Hamiltonian, as described by quantum mechanics/molecular mechanics calculations performed along a classical MD trajectory. Neither the fluctuations in the couplings nor spatial correlations including cross-correlations between site energies and couplings are found to be important in the exciton dynamics of the complex. This finding does not change if a polarizable embedding is used instead of its electrostatic counterpart. The impact of variations in spectral densities and screening of excitonic couplings based on the electrostatic and polarizable embeddings are discussed as well

    Different Types of Vibrations Interacting with Electronic Excitations in Phycoerythrin 545 and Fenna–Matthews–Olson Antenna Systems

    No full text
    The interest in the phycoerythrin 545 (PE545) photosynthetic antenna system of marine algae and the Fenna–Matthews–Olson (FMO) complex of green sulfur bacteria has drastically increased since long-lived quantum coherences were reported for these complexes. For the PE545 complex, this phenomenon is clearly visible even at ambient temperatures, while for the FMO system it is more prominent at lower temperatures. The key to elucidate the role of the environment in these long-lived quantum effects is the spectral density. Here, we employ molecular dynamics simulations combined with quantum chemistry calculations to study the coupling between the biological environment and the vertical excitation energies of the bilin pigment molecules in PE545 and compare them to prior calculations on the FMO complex. It is found that the overall strength of the resulting spectral densities for the PE545 system is similar to the experiment-based counterpart but also to those in the FMO complex. Molecular analysis, however, reveals that the origin for the spectral densities in the low frequency range, which is most important for excitonic transitions, is entirely different. In the case of FMO, this part of the spectral density is due to environmental fluctuations, while, in case of PE545, it is essentially only due to internal modes of the bilin molecules. This finding sheds new light on possible explanations of the long-lived quantum coherences and that the reasons might actually be different in dissimilar systems
    corecore