12,729 research outputs found

    Handbook explaining the fundamentals of nuclear and atomic physics

    Get PDF
    Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed

    Minnesota Agricultural Economist 685

    Get PDF
    Livestock Production/Industries,

    Double-Edged Secrets

    Get PDF

    TB24: The Caddisflies (Trichoptera) of Maine Excepting the Family Hydroptilidae

    Get PDF
    A survey of the Trichoptera taken from light trap collections made during July and August, 1959, form the basis of the present paper. A checklist of the family Hydroptilidae known from Maine has been published. The collections were made for the most part in the Boreal Region of Maine.https://digitalcommons.library.umaine.edu/aes_techbulletin/1163/thumbnail.jp

    Morality and Foreign Policy

    Get PDF

    Temporal Ordering in Quantum Mechanics

    Full text link
    We examine the measurability of the temporal ordering of two events, as well as event coincidences. In classical mechanics, a measurement of the order-of-arrival of two particles is shown to be equivalent to a measurement involving only one particle (in higher dimensions). In quantum mechanics, we find that diffraction effects introduce a minimum inaccuracy to which the temporal order-of-arrival can be determined unambiguously. The minimum inaccuracy of the measurement is given by dt=1/E where E is the total kinetic energy of the two particles. Similar restrictions apply to the case of coincidence measurements. We show that these limitations are much weaker than limitations on measuring the time-of-arrival of a particle to a fixed location.Comment: New section added, arguing that order-of-arrival can be measured more accurately than time-of-arrival. To appear in Journal of Physics

    Bounded Model Checking of State-Space Digital Systems: The Impact of Finite Word-Length Effects on the Implementation of Fixed-Point Digital Controllers Based on State-Space Modeling

    Full text link
    The extensive use of digital controllers demands a growing effort to prevent design errors that appear due to finite-word length (FWL) effects. However, there is still a gap, regarding verification tools and methodologies to check implementation aspects of control systems. Thus, the present paper describes an approach, which employs bounded model checking (BMC) techniques, to verify fixed-point digital controllers represented by state-space equations. The experimental results demonstrate the sensitivity of such systems to FWL effects and the effectiveness of the proposed approach to detect them. To the best of my knowledge, this is the first contribution tackling formal verification through BMC of fixed-point state-space digital controllers.Comment: International Symposium on the Foundations of Software Engineering 201

    Screening of charged spheroidal colloidal particles

    Full text link
    We study the effective screened electrostatic potential created by a spheroidal colloidal particle immersed in an electrolyte, within the mean field approximation, using Poisson--Botzmann equation in its linear and nonlinear forms, and also beyond the mean field by means of Monte Carlo computer simulation. The anisotropic shape of the particle has a strong effect on the screened potential, even at large distances (compared to the Debye length) from it. To quantify this anisotropy effect, we focus our study on the dependence of the potential on the position of the observation point with respect with the orientation of the spheroidal particle. For several different boundary conditions (constant potential, or constant surface charge) we find that, at large distance, the potential is higher in the direction of the large axis of the spheroidal particle

    Investigations on T violation and CPT symmetry in the neutral kaon system -- a pedagogical approach --

    Full text link
    During the recent years experiments with neutral kaons have yielded remarkably sensitive results which are pertinent to such fundamental phenomena as CPT invariance (protecting causality), time-reversal invariance violation, coherence of wave functions, and entanglement of kaons in pair states. We describe the phenomenological developments and the theoretical conclusions drawn from the experimental material. An outlook to future experimentation is indicated.Comment: 41 pages, 9 figures. See arXiv:hep-ph/0603075 for an enlarged versio

    Ion Trap Mass Spectrometers for Identity, Abundance and Behavior of Volatiles on the Moon

    Get PDF
    NASA GSFC and The Open University (UK) are collaborating to deploy an Ion Trap Mass Spectrometer on the Moon to investigate the lunar water cycle. The ITMS is flight-proven throughthe Rosetta Philae comet lander mission. It is also being developed under ESA funding to analyse samples drilled from beneath the lunar surface on the Roscosmos Luna-27 lander (2025).Now, GSFC and OU will now develop a compact ITMS instrument to study the near-surface lunar exosphere on board a CLPS Astrobotic lander at Lacus Mortis in 2021
    corecore