We examine the measurability of the temporal ordering of two events, as well
as event coincidences. In classical mechanics, a measurement of the
order-of-arrival of two particles is shown to be equivalent to a measurement
involving only one particle (in higher dimensions). In quantum mechanics, we
find that diffraction effects introduce a minimum inaccuracy to which the
temporal order-of-arrival can be determined unambiguously. The minimum
inaccuracy of the measurement is given by dt=1/E where E is the total kinetic
energy of the two particles. Similar restrictions apply to the case of
coincidence measurements. We show that these limitations are much weaker than
limitations on measuring the time-of-arrival of a particle to a fixed location.Comment: New section added, arguing that order-of-arrival can be measured more
accurately than time-of-arrival. To appear in Journal of Physics