14,758 research outputs found

    Quantized Non-Abelian Monopoles on S^3

    Full text link
    A possible electric-magnetic duality suggests that the confinement of non-Abelian electric charges manifests itself as a perturbative quantum effect for the dual magnetic charges. Motivated by this possibility, we study vacuum fluctuations around a non-Abelian monopole-antimonopole pair treated as point objects with charges g=\pm n/2 (n=1,2,...), and placed on the antipodes of a three sphere of radius R. We explicitly find all the fluctuation modes by linearizing and solving the Yang-Mills equations about this background field on a three sphere. We recover, generalize and extend earlier results, including those on the stability analysis of non-Abelian magnetic monopoles. We find that for g \ge 1 monopoles there is an unstable mode that tends to squeeze magnetic flux in the angular directions. We sum the vacuum energy contributions of the fluctuation modes for the g=1/2 case and find oscillatory dependence on the cutoff scale. Subject to certain assumptions, we find that the contribution of the fluctuation modes to the quantum zero point energy behaves as -R^{-2/3} and hence decays more slowly than the classical -R^{-1} Coulomb potential for large R. However, this correction to the zero point energy does not agree with the linear growth expected if the monopoles are confined.Comment: 18 pages, 5 figures. Minor changes, reference list update

    Magnetoconductance of carbon nanotube p-n junctions

    Full text link
    The magnetoconductance of p-n junctions formed in clean single wall carbon nanotubes is studied in the noninteracting electron approximation and perturbatively in electron-electron interaction, in the geometry where a magnetic field is along the tube axis. For long junctions the low temperature magnetoconductance is anomalously large: the relative change in the conductance becomes of order unity even when the flux through the tube is much smaller than the flux quantum. The magnetoconductance is negative for metallic tubes. For semiconducting and small gap tubes the magnetoconductance is nonmonotonic; positive at small and negative at large fields.Comment: 5 pages, 2 figure

    A Nearly Scale Invariant Spectrum of Gravitational Radiation from Global Phase Transitions

    Full text link
    Using a large N sigma model approximation we explicitly calculate the power spectrum of gravitational waves arising from a global phase transition in the early universe and we confirm that it is scale invariant, implying an observation of such a spectrum may not be a unique feature of inflation. Moreover, the predicted amplitude can be over 3 orders of magnitude larger than the naive dimensional estimate, implying that even a transition that occurs after inflation may dominate in Cosmic Microwave Background polarization or other gravity wave signals.Comment: 4 pages, PRL published versio

    Adequacy of the Dicke model in cavity QED: a counter-"no-go" statement

    Full text link
    The long-standing debate whether the phase transition in the Dicke model can be realized with dipoles in electromagnetic fields is yet an unsettled one. The well-known statement often referred to as the "no-go theorem", asserts that the so-called A-square term, just in the vicinity of the critical point, becomes relevant enough to prevent the system from undergoing a phase transition. At variance with this common belief, in this paper we prove that the Dicke model does give a consistent description of the interaction of light field with the internal excitation of atoms, but in the dipole gauge of quantum electrodynamics. The phase transition cannot be excluded by principle and a spontaneous transverse-electric mean field may appear. We point out that the single-mode approximation is crucial: the proper treatment has to be based on cavity QED, wherefore we present a systematic derivation of the dipole gauge inside a perfect Fabry-P\'erot cavity from first principles. Besides the impact on the debate around the Dicke phase transition, such a cleanup of the theoretical ground of cavity QED is important because currently there are many emerging experimental approaches to reach strong or even ultrastrong coupling between dipoles and photons, which demand a correct treatment of the Dicke model parameters

    Resonance modes in a 1D medium with two purely resistive boundaries: calculation methods, orthogonality and completeness

    Get PDF
    Studying the problem of wave propagation in media with resistive boundaries can be made by searching for "resonance modes" or free oscillations regimes. In the present article, a simple case is investigated, which allows one to enlighten the respective interest of different, classical methods, some of them being rather delicate. This case is the 1D propagation in a homogeneous medium having two purely resistive terminations, the calculation of the Green function being done without any approximation using three methods. The first one is the straightforward use of the closed-form solution in the frequency domain and the residue calculus. Then the method of separation of variables (space and time) leads to a solution depending on the initial conditions. The question of the orthogonality and completeness of the complex-valued resonance modes is investigated, leading to the expression of a particular scalar product. The last method is the expansion in biorthogonal modes in the frequency domain, the modes having eigenfrequencies depending on the frequency. Results of the three methods generalize or/and correct some results already existing in the literature, and exhibit the particular difficulty of the treatment of the constant mode

    Lyapunov-like Conditions of Forward Invariance and Boundedness for a Class of Unstable Systems

    Get PDF
    We provide Lyapunov-like characterizations of boundedness and convergence of non-trivial solutions for a class of systems with unstable invariant sets. Examples of systems to which the results may apply include interconnections of stable subsystems with one-dimensional unstable dynamics or critically stable dynamics. Systems of this type arise in problems of nonlinear output regulation, parameter estimation and adaptive control. In addition to providing boundedness and convergence criteria the results allow to derive domains of initial conditions corresponding to solutions leaving a given neighborhood of the origin at least once. In contrast to other works addressing convergence issues in unstable systems, our results require neither input-output characterizations for the stable part nor estimates of convergence rates. The results are illustrated with examples, including the analysis of phase synchronization of neural oscillators with heterogenous coupling
    • …
    corecore