17,518 research outputs found

    Singular Fermi Surfaces I. General Power Counting and Higher Dimensional Cases

    Full text link
    We prove regularity properties of the self-energy, to all orders in perturbation theory, for systems with singular Fermi surfaces which contain Van Hove points where the gradient of the dispersion relation vanishes. In this paper, we show for spatial dimensions d≥3d \ge 3 that despite the Van Hove singularity, the overlapping loop bounds we proved together with E. Trubowitz for regular non--nested Fermi surfaces [J. Stat. Phys. 84 (1996) 1209] still hold, provided that the Fermi surface satisfies a no-nesting condition. This implies that for a fixed interacting Fermi surface, the self-energy is a continuously differentiable function of frequency and momentum, so that the quasiparticle weight and the Fermi velocity remain close to their values in the noninteracting system to all orders in perturbation theory. In a companion paper, we treat the more singular two-dimensional case.Comment: 48 pages LaTeX with figure

    Quantized Non-Abelian Monopoles on S^3

    Full text link
    A possible electric-magnetic duality suggests that the confinement of non-Abelian electric charges manifests itself as a perturbative quantum effect for the dual magnetic charges. Motivated by this possibility, we study vacuum fluctuations around a non-Abelian monopole-antimonopole pair treated as point objects with charges g=\pm n/2 (n=1,2,...), and placed on the antipodes of a three sphere of radius R. We explicitly find all the fluctuation modes by linearizing and solving the Yang-Mills equations about this background field on a three sphere. We recover, generalize and extend earlier results, including those on the stability analysis of non-Abelian magnetic monopoles. We find that for g \ge 1 monopoles there is an unstable mode that tends to squeeze magnetic flux in the angular directions. We sum the vacuum energy contributions of the fluctuation modes for the g=1/2 case and find oscillatory dependence on the cutoff scale. Subject to certain assumptions, we find that the contribution of the fluctuation modes to the quantum zero point energy behaves as -R^{-2/3} and hence decays more slowly than the classical -R^{-1} Coulomb potential for large R. However, this correction to the zero point energy does not agree with the linear growth expected if the monopoles are confined.Comment: 18 pages, 5 figures. Minor changes, reference list update

    Resonance modes in a 1D medium with two purely resistive boundaries: calculation methods, orthogonality and completeness

    Get PDF
    Studying the problem of wave propagation in media with resistive boundaries can be made by searching for "resonance modes" or free oscillations regimes. In the present article, a simple case is investigated, which allows one to enlighten the respective interest of different, classical methods, some of them being rather delicate. This case is the 1D propagation in a homogeneous medium having two purely resistive terminations, the calculation of the Green function being done without any approximation using three methods. The first one is the straightforward use of the closed-form solution in the frequency domain and the residue calculus. Then the method of separation of variables (space and time) leads to a solution depending on the initial conditions. The question of the orthogonality and completeness of the complex-valued resonance modes is investigated, leading to the expression of a particular scalar product. The last method is the expansion in biorthogonal modes in the frequency domain, the modes having eigenfrequencies depending on the frequency. Results of the three methods generalize or/and correct some results already existing in the literature, and exhibit the particular difficulty of the treatment of the constant mode

    Seasonal reproduction in a fluctuating energy environment: Insolation-driven synchronized broadcast spawning in corals

    Get PDF
    *Background/Question/Methods:* Colonies of spawning corals reproduce in mass-spawning events, in which polyps within each colony release sperm and eggs for fertilization in the water column, with fertilization occurring only between gametes from different colonies. Participating colonies synchronize their gamete release to a window of a few hours once a year (for the species Acropora digitifera we study experimentally). This remarkable synchrony is essential for successful coral reproduction and thus, maintenance of the coral reef ecosystem that is currently under threat from local and global environmental effects such as pollution, global warming and ocean acidification. The mechanisms determining this tight synchrony in reproduction are not well understood, although several influences have been hypothesized and studied including lunar phase, solar insolation, and influences of temperature and tides. Moreover, most corals are in a symbiotic relationship with photosynthetic algae (Symbiodinium spp.) that live within the host tissue. Experiments supported by detailed bioenergetic modeling of the coral-algae symbiosis have shown that corals receive >90% of their energy needs from these symbionts. We develop a bioenergetic integrate-and-fire model in order to investigate whether annual insolation rhythms can entrain the gametogenetic cycles that produce mature gametes to the appropriate spawning season, since photosynthate is their primary source of energy. We solve the integrate-and-fire bioenergetic model numerically using the Fokker-Planck equation and use analytical tools such as rotation number to study entrainment.

*Results/Conclusions:* In the presence of short-term fluctuations in the energy input, our model shows that a feedback regulatory mechanism is required to achieve coherence of spawning times to within one lunar cycle, in order for subsequent cues such as lunar and diurnal light cycles to unambiguously determine the “correct” night of spawning. Entrainment to the annual insolation cycle is by itself not sufficient to produce the observed coherence in spawning. The feedback mechanism can also provide robustness against population heterogeneity due to genetic and environmental effects. We also discuss how such bioenergetic, stochastic, integrate-and-fire models are also more generally applicable: for example to aquatic insect emergence, synchrony in cell division and masting in trees

    Finite Temperature Spectral Densities of Momentum and R-Charge Correlators in N=4\N=4 Yang Mills Theory

    Full text link
    We compute spectral densities of momentum and R-charge correlators in thermal N=4\N=4 Yang Mills at strong coupling using the AdS/CFT correspondence. For ω∼T\omega \sim T and smaller, the spectral density differs markedly from perturbation theory; there is no kinetic theory peak. For large ω\omega, the spectral density oscillates around the zero-temperature result with an exponentially decreasing amplitude. Contrast this with QCD where the spectral density of the current-current correlator approaches the zero temperature result like (T/ω)4(T/\omega)^4. Despite these marked differences with perturbation theory, in Euclidean space-time the correlators differ by only ∼10\sim 10% from the free result. The implications for Lattice QCD measurements of transport are discussed.Comment: 18 pages, 3 figure

    Investigations on T violation and CPT symmetry in the neutral kaon system -- a pedagogical approach --

    Full text link
    During the recent years experiments with neutral kaons have yielded remarkably sensitive results which are pertinent to such fundamental phenomena as CPT invariance (protecting causality), time-reversal invariance violation, coherence of wave functions, and entanglement of kaons in pair states. We describe the phenomenological developments and the theoretical conclusions drawn from the experimental material. An outlook to future experimentation is indicated.Comment: 41 pages, 9 figures. See arXiv:hep-ph/0603075 for an enlarged versio

    An interacting quark-diquark model of baryons

    Full text link
    A simple quark-diquark model of baryons with direct and exchange interactions is constructed. Spectrum and form factors are calculated and compared with experimental data. Advantages and disadvantages of the model are discussed.Comment: 13 pages, 3 eps-figures, accepted by Phys.Rev. C Rapid Communication
    • …
    corecore