11,391 research outputs found
Effect of White Spruce Release on Subsequent Defoliation by the Yellowheaded Spruce Sawfly, Pikonema Alaskensis (Hymenoptera: Tenthredinidae)
Hand release of 22 5-year-old white spruce, Picea glauca (Moench) Voss, dramatically increased the amount of defoliation by the yellowheaded spruce sawfly, Pikonema alaskens is . The percent defoliation of the released trees was six times the defoliation in the control trees. A light overstory for young white spruce is suggested as a silvicultural method of reducing defoliation by this sawfly
Role of low- component in deformed wave functions near the continuum threshold
The structure of deformed single-particle wave functions in the vicinity of
zero energy limit is studied using a schematic model with a quadrupole deformed
finite square-well potential. For this purpose, we expand the single-particle
wave functions in multipoles and seek for the bound state and the Gamow
resonance solutions. We find that, for the states, where is
the -component of the orbital angular momentum, the probability of each
multipole components in the deformed wave function is connected between the
negative energy and the positive energy regions asymptotically, although it has
a discontinuity around the threshold. This implies that the
resonant level exists physically unless the component is inherently large
when extrapolated to the well bound region. The dependence of the multipole
components on deformation is also discussed
Screening of charged spheroidal colloidal particles
We study the effective screened electrostatic potential created by a
spheroidal colloidal particle immersed in an electrolyte, within the mean field
approximation, using Poisson--Botzmann equation in its linear and nonlinear
forms, and also beyond the mean field by means of Monte Carlo computer
simulation. The anisotropic shape of the particle has a strong effect on the
screened potential, even at large distances (compared to the Debye length) from
it. To quantify this anisotropy effect, we focus our study on the dependence of
the potential on the position of the observation point with respect with the
orientation of the spheroidal particle. For several different boundary
conditions (constant potential, or constant surface charge) we find that, at
large distance, the potential is higher in the direction of the large axis of
the spheroidal particle
Ion Trap Mass Spectrometers for Identity, Abundance and Behavior of Volatiles on the Moon
NASA GSFC and The Open University (UK) are collaborating to deploy an Ion Trap Mass Spectrometer on the Moon to investigate the lunar water cycle. The ITMS is flight-proven throughthe Rosetta Philae comet lander mission. It is also being developed under ESA funding to analyse samples drilled from beneath the lunar surface on the Roscosmos Luna-27 lander (2025).Now, GSFC and OU will now develop a compact ITMS instrument to study the near-surface lunar exosphere on board a CLPS Astrobotic lander at Lacus Mortis in 2021
Temporal Ordering in Quantum Mechanics
We examine the measurability of the temporal ordering of two events, as well
as event coincidences. In classical mechanics, a measurement of the
order-of-arrival of two particles is shown to be equivalent to a measurement
involving only one particle (in higher dimensions). In quantum mechanics, we
find that diffraction effects introduce a minimum inaccuracy to which the
temporal order-of-arrival can be determined unambiguously. The minimum
inaccuracy of the measurement is given by dt=1/E where E is the total kinetic
energy of the two particles. Similar restrictions apply to the case of
coincidence measurements. We show that these limitations are much weaker than
limitations on measuring the time-of-arrival of a particle to a fixed location.Comment: New section added, arguing that order-of-arrival can be measured more
accurately than time-of-arrival. To appear in Journal of Physics
Quadratic response theory for spin-orbit coupling in semiconductor heterostructures
This paper examines the properties of the self-energy operator in
lattice-matched semiconductor heterostructures, focusing on nonanalytic
behavior at small values of the crystal momentum, which gives rise to
long-range Coulomb potentials. A nonlinear response theory is developed for
nonlocal spin-dependent perturbing potentials. The ionic pseudopotential of the
heterostructure is treated as a perturbation of a bulk reference crystal, and
the self-energy is derived to second order in the perturbation. If spin-orbit
coupling is neglected outside the atomic cores, the problem can be analyzed as
if the perturbation were a local spin scalar, since the nonlocal spin-dependent
part of the pseudopotential merely renormalizes the results obtained from a
local perturbation. The spin-dependent terms in the self-energy therefore fall
into two classes: short-range potentials that are analytic in momentum space,
and long-range nonanalytic terms that arise from the screened Coulomb potential
multiplied by a spin-dependent vertex function. For an insulator at zero
temperature, it is shown that the electronic charge induced by a given
perturbation is exactly linearly proportional to the charge of the perturbing
potential. These results are used in a subsequent paper to develop a
first-principles effective-mass theory with generalized Rashba spin-orbit
coupling.Comment: 20 pages, no figures, RevTeX4; v2: final published versio
Arrival time distribution for a driven system containing quenched dichotomous disorder
We study the arrival time distribution of overdamped particles driven by a
constant force in a piecewise linear random potential which generates the
dichotomous random force. Our approach is based on the path integral
representation of the probability density of the arrival time. We explicitly
calculate the path integral for a special case of dichotomous disorder and use
the corresponding characteristic function to derive prominent properties of the
arrival time probability density. Specifically, we establish the scaling
properties of the central moments, analyze the behavior of the probability
density for short, long, and intermediate distances. In order to quantify the
deviation of the arrival time distribution from a Gaussian shape, we evaluate
the skewness and the kurtosis.Comment: 18 pages, 5 figure
The availability of the soil potash in clay and clay loam soils, Bulletin, no. 142
The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire
Analyses of feeding -stuffs, Bulletin, no. 147
The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire
- …