15 research outputs found

    High prevalence of BRCA1 stop mutation c.4183C>T in the Tyrolean population: implications for genetic testing

    Full text link
    Screening for founder mutations in BRCA1 and BRCA2 has been discussed as a cost-effective testing strategy in certain populations. In this study, comprehensive BRCA1 and BRCA2 testing was performed in a routine diagnostic setting. The prevalence of the BRCA1 stop mutation c.4183C>T, p.(Gln1395Ter), was determined in unselected breast and ovarian cancer patients from different regions in the Tyrol. Cancer registry data were used to evaluate the impact of this mutation on regional cancer incidence. The mutation c.4183C>T was detected in 30.4% of hereditary BRCA1-associated breast and ovarian cancer patients in our cohort. It was also identified in 4.1% of unselected (26% of unselected triple negative) Tyrolean breast cancer patients and 6.8% of unselected ovarian cancer patients from the Lower Inn Valley (LIV) region. Cancer incidences showed a region-specific increase in age-stratified breast and ovarian cancer risk with standardized incidence ratios of 1.23 and 2.13, respectively. We, thus, report a Tyrolean BRCA1 founder mutation that correlates to a local increase in the breast and ovarian cancer risks. On the basis of its high prevalence, we suggest that targeted genetic analysis should be offered to all women with breast or ovarian cancer and ancestry from the LIV region

    Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: is riboflavin supplementation effective?

    Get PDF
    BACKGROUND: Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy. RESULTS: We describe the genetic, clinical and biochemical findings in a cohort of 70 patients, of whom 29 previously unpublished. We found 34 known and 18 previously unreported variants in ACAD9. No patients harbored biallelic loss of function mutations, indicating that this combination is unlikely to be compatible with life. Causal pathogenic variants were distributed throughout the entire gene, and there was no obvious genotype-phenotype correlation. Most of the patients presented in the first year of life. For this subgroup the survival was poor (50% not surviving the first 2 years) comparing to patients with a later presentation (more than 90% surviving 10 years). The most common clinical findings were cardiomyopathy (85%), muscular weakness (75%) and exercise intolerance (72%). Interestingly, severe intellectual deficits were only reported in one patient and severe developmental delays in four patients. More than 70% of the patients were able to perform the same activities of daily living when compared to peers. CONCLUSIONS: Our data show that riboflavin treatment improves complex I activity in the majority of patient-derived fibroblasts tested. This effect was also reported for most of the treated patients and is mirrored in the survival data. In the patient group with disease-onset below 1 year of age, we observed a statistically-significant better survival for patients treated with riboflavin

    Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: Is riboflavin supplementation effective?

    Get PDF
    Background: Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy. Results: We describe the genetic, clinical and biochemical findings in a cohort of 70 patients, of whom 29 previously unpublished. We found 34 known and 18 previously unreported variants in ACAD9. No patients harbored biallelic loss of function mutations, indicating that this combination is unlikely to be compatible with life. Causal pathogenic variants were distributed throughout the entire gene, and there was no obvious genotype-phenotype correlation. Most of the patients presented in the first year of life. For this subgroup the survival was poor (50% not surviving the first 2 years) comparing to patients with a later presentation (more than 90% surviving 10 years). The most common clinical findings were cardiomyopathy (85%), muscular weakness (75%) and exercise intolerance (72%). Interestingly, severe intellectual deficits were only reported in one patient and

    Combination of metronomic cyclophosphamide and dietary intervention inhibits neuroblastoma growth in a CD1-nu mouse model

    Get PDF
    BACKGROUND MYCN-amplification in high-grade Neuroblastoma (NB) tumors correlates with increased vascularization and therapy resistance. This study combines an anti-angiogenic approach with targeting NB metabolism for treatment. METHODS AND RESULTS Metronomic cyclophosphamide (MCP) monotherapy significantly inhibited NB growth and prolonged host survival. Growth inhibition was more pronounced in MYCN-amplified xenografts. Immunohistochemical evaluation of this subtype showed significant decrease in blood vessel density and intratumoral hemorrhage accompanied by blood vessel maturation and perivascular fibrosis. Up-regulation of VEGFA was not sufficient to compensate for the effects of the MCP regimen. Reduced Bcl-2 expression and increased caspase-3 cleavage were evident. In contrast non MYCN-amplified tumors developed resistance, which was accompanied by Bcl-2-up-regulation. Combining MCP with a ketogenic diet and/or calorie-restriction significantly enhanced the anti-tumor effect. Calorie-restricted ketogenic diet in combination with MCP resulted in tumor regression in all cases. CONCLUSIONS Our data show efficacy of combining an anti-angiogenic cyclophosphamide dosing regimen with dietary intervention in a preclinical NB model. These findings might open a new front in NB treatment

    Psychosocial outcomes and counselee satisfaction following genetic counseling for hereditary breast and ovarian cancer: A patient-reported outcome study

    Full text link
    OBJECTIVE We investigated the psychosocial consequences of genetic counseling and testing (GCT) for hereditary breast and ovarian cancer (HBOC) at follow-up in a "real-life" sample of counselees at an Austrian tertiary care center. METHODS The study cohort included counselees who had undergone genetic counseling for HBOC and completed a follow-up self-report questionnaire battery on psychosocial outcomes (quality of life, psychological distress, satisfaction with counseling and decisions). For comparison of distress, we recruited a reference sample of breast cancer survivors (BCS; n=665) who had not requested GCT in the same setting. RESULTS Overall, counselees did not exhibit increased levels of anxiety and depression when compared to BCS. No specific follow-up deleterious psychosocial consequences were detected among the former group. Of the 137 counselees, 22.6% and 9.8% experienced clinically relevant levels of anxiety and depression, respectively, at an average follow-up time of 1.8years. However, both anxiety and depression significantly decreased with time and were alike between counselees with and without cancer diagnosis. Follow-up cancer worry seems to be significantly higher among counselees who had not undergone genetic testing or were undecided about it than among counselees who had been tested. CONCLUSION Our results strongly support GCT as part of routine care for patients with HBOC. The risk factors of increased distress in specific subgroups of counselees, such as recent cancer diagnosis or uncertainty about testing, warrant further exploration and specific attention in clinical routines. Particularly, the psychological needs of undecided counselees warrant ongoing attention and potential follow-ups

    Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model

    Get PDF
    <div><p>Introduction</p><p>Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer’s oxidative phosphorylation system.</p><p>Methods</p><p>Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2)]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content).</p><p>Results</p><p>Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention.</p><p>Conclusions</p><p>Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting standard therapy regimens. Therefore, we propose that a ketogenic diet and/or calorie restriction should be further evaluated as a possible adjuvant therapy for patients undergoing treatment for neuroblastoma.</p></div

    Immunohistochemical (IHC) staining of mitochondrial OXPHOS complexes I-V and VDAC in SH-SY5Y xenograft tumors.

    No full text
    <p>IHC staining of NB sections were scored on a scale from 0–3 as described in the methods section. The CR-KD group showed a significant decrease in complex I staining. All other evaluated parameters were unaffected by dietary changes. Voltage-dependent ion channel (VDAC) protein levels are used as a surrogate marker of mitochondrial mass. Statistics: ANOVA (p <0.05) followed by two-tailed Dunnett’s test correcting for multiple comparisons. Diet groups are compared to the corresponding SD group.</p

    Proliferation indices Ki-67 (A-C) and PHH3 (D-F) suggest reduced proliferation by G0 or early G1 arrest.

    No full text
    <p>CR reduces proliferation in both cell lines whereas KD caused no reduction of proliferative activity in the SK-N-BE(2) xenograft group. A) shows a representative SD Ki-67 staining pattern in comparison to the CR-KD pattern (B) in SK-N-BE(2) tumor samples. For SH-SY5Y xenografts, PHH3 staining is depicted in D) and E) for SD and CR-KD treatment, respectively. Results are given as mean ± SEM. Statistics: ANOVA (p <0.05) followed by Dunnett’s test correcting for multiple comparisons. Diet groups are compared to the corresponding SD. * p≤0.05; ** p≤0.01; *** p≤0.001.</p

    Ketogenic diet and calorie restriction reduce tumor growth and prolong survival in a NB xenograft model.

    No full text
    <p>After establishing tumors on the right flank of CD-1nu mice, the mice were randomized to diet groups as indicated. Tumor volume was measured twice weekly. A) For SH-SY5Y xenografts at day 19, the tumors of all diet groups showed significant growth inhibition compared to the SD group (CR-SD p = 0.001, KD p<0.001, CR-KD p<0.001). B) At day 33, SK-N-BE(2) tumor growth was significantly inhibited by CR (CR-SD p = 0.040, CR-KD p = 0.004). Inhibition of tumor growth was less pronounced in the KD group (p = 0.918). C) SH-SY5Y and D) SK-N-BE(2) show the results of Kaplan-Meier survival analysis of the corresponding treatment groups. Survival of mice with SH-SY5Y tumors at day 22 on SD was 0% compared to 75% on CR-SD (p<0.001), 50% on KD (p<0.001) and 100% on CR-KD (p<0.001). Survival of mice with SK-N-BE(2) xenografts at day 33 on SD was 36% compared to 83% on CR-SD (p = 0.017), 73% on KD (p = 0.09) and 100% on CR–KD (p<0.001). A, B) Data points for tumor growth curves represent mean values ± SEM of the corresponding diet group (n = 8–11). Statistics: ANOVA (p<0.05) followed by two-tailed Dunnett’s test correcting for multiple comparisons. C, D) Survival is expressed by the Kaplan–Meier method and differences between groups were determined in a univariate analysis with the log-rank test. Death is coded: tumor volume above 3000 mm<sup>3</sup>, tumor ulceration or impaired health condition. Diet groups are compared to the corresponding SD. * p≤0.05; ** p≤0.01; *** p≤0.001.</p
    corecore