1,311 research outputs found
An ultra-bright atom laser
We present a novel, ultra-bright atom-laser and ultra-cold thermal atom beam.
Using rf-radiation we strongly couple the magnetic hyperfine levels of 87Rb
atoms in a magnetically trapped Bose-Einstein condensate. At low rf-frequencies
gravity opens a small hole in the trapping potenital and a well collimated,
extremely bright atom laser emerges from just below the condensate. As opposed
to traditional atom lasers based on weak coupling, this technique allows us to
outcouple atoms at an arbitrarily large rate. We demonstrate an increase in
flux per atom in the BEC by a factor of sixteen compared to the brightest
quasi-continuous atom laser. Furthermore, we produce by two orders of magnitude
the coldest thermal atom beam to date (200 nK).Comment: 20 pages, 9 figures, supplementary material online at
http://www.bec.g
Proton Lifetime and Baryon Number Violating Signatures at the LHC in Gauge Extended Models
There exist a number of models in the literature in which the weak
interactions are derived from a chiral gauge theory based on a larger group
than SU(2)_L x U(1)_Y. Such theories can be constructed so as to be
anomaly-free and consistent with precision electroweak measurements, and may be
interpreted as a deconstruction of an extra dimension. They also provide
interesting insights into the issues of flavor and dynamical electroweak
symmetry breaking, and can help to raise the mass of the Higgs boson in
supersymmetric theories. In this work we show that these theories can also give
rise to baryon and lepton number violating processes, such as nucleon decay and
spectacular multijet events at colliders, via the instanton transitions
associated with the extended gauge group. For a particular model based on
SU(2)_1 x SU(2)_2, we find that the violating scattering cross sections
are too small to be observed at the LHC, but that the lower limit on the
lifetime of the proton implies an upper bound on the gauge couplings.Comment: 36 page
Enhanced Production of Neutron-Rich Rare Isotopes in Peripheral Collisions at Fermi Energies
A large enhancement in the production of neutron-rich projectile residues is
observed in the reactions of a 25 MeV/nucleon 86Kr beam with the neutron rich
124Sn and 64Ni targets relative to the predictions of the EPAX parametrization
of high-energy fragmentation, as well as relative to the reaction with the less
neutron-rich 112Sn target. The data demonstrate the significant effect of the
target neutron-to-proton ratio (N/Z) in peripheral collisions at Fermi
energies. A hybrid model based on a deep-inelastic transfer code (DIT) followed
by a statistical de-excitation code appears to account for part of the observed
large cross sections. The DIT simulation indicates that the production of the
neutron-rich nuclides in these reactions is associated with peripheral nucleon
exchange. In such peripheral encounters, the neutron skins of the neutron-rich
124Sn and 64Ni target nuclei may play an important role. From a practical
viewpoint, such reactions between massive neutron-rich nuclei offer a novel and
attractive synthetic avenue to access extremely neutron-rich rare isotopes
towards the neutron-drip line.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
The Supersymmetric Origin of Matter
The Minimal Supersymmetric extension of the Standard Model (MSSM) can provide
the correct neutralino relic abundance and baryon number asymmetry of the
universe. Both may be efficiently generated in the presence of CP violating
phases, light charginos and neutralinos, and a light top squark. Due to the
coannihilation of the neutralino with the light stop, we find a large region of
parameter space in which the neutralino relic density is consistent with WMAP
and SDSS data. We perform a detailed study of the additional constraints
induced when CP violating phases, consistent with the ones required for
baryogenesis, are included. We explore the possible tests of this scenario from
present and future electron Electric Dipole Moment (EDM) measurements, direct
neutralino detection experiments, collider searches and the b -> s gamma decay
rate. We find that the EDM constraints are quite severe and that electron EDM
experiments, together with stop searches at the Tevatron and Higgs searches at
the LHC, will provide a definite test of our scenario of electroweak
baryogenesis in the next few years.Comment: 30 pages, 14 figure
UV/Optical Detections of Candidate Tidal Disruption Events by GALEX and CFHTLS
We present two luminous UV/optical flares from the nuclei of apparently
inactive early-type galaxies at z=0.37 and 0.33 that have the radiative
properties of a flare from the tidal disruption of a star. In this paper we
report the second candidate tidal disruption event discovery in the UV by the
GALEX Deep Imaging Survey, and present simultaneous optical light curves from
the CFHTLS Deep Imaging Survey for both UV flares. The first few months of the
UV/optical light curves are well fitted with the canonical t^(-5/3) power-law
decay predicted for emission from the fallback of debris from a tidally
disrupted star. Chandra ACIS X-ray observations during the flares detect soft
X-ray sources with T_bb= (2-5) x 10^5 K or Gamma > 3 and place limits on hard
X-ray emission from an underlying AGN down to L_X (2-10 keV) <~ 10^41 ergs/s.
Blackbody fits to the UV/optical spectral energy distributions of the flares
indicate peak flare luminosities of > 10^44-10^45 ergs/s. The temperature,
luminosity, and light curves of both flares are in excellent agreement with
emission from a tidally disrupted main sequence star onto a central black hole
of several times 10^7 msun. The observed detection rate of our search over ~
2.9 deg^2 of GALEX Deep Imaging Survey data spanning from 2003 to 2007 is
consistent with tidal disruption rates calculated from dynamical models, and we
use these models to make predictions for the detection rates of the next
generation of optical synoptic surveys.Comment: 28 pages, 27 figures, 11 tables, accepted to ApJ, final corrections
from proofs adde
Ultraviolet through Infrared Spectral Energy Distributions from 1000 SDSS Galaxies: Dust Attenuation
The meaningful comparison of models of galaxy evolution to observations is
critically dependent on the accurate treatment of dust attenuation. To
investigate dust absorption and emission in galaxies we have assembled a sample
of ~1000 galaxies with ultraviolet (UV) through infrared (IR) photometry from
GALEX, SDSS, and Spitzer and optical spectroscopy from SDSS. The ratio of IR to
UV emission (IRX) is used to constrain the dust attenuation in galaxies. We use
the 4000A break as a robust and useful, although coarse, indicator of star
formation history (SFH). We examine the relationship between IRX and the UV
spectral slope (a common attenuation indicator at high-redshift) and find
little dependence of the scatter on 4000A break strength. We construct average
UV through far-IR spectral energy distributions (SEDs) for different ranges of
IRX, 4000A break strength, and stellar mass (M_*) to show the variation of the
entire SED with these parameters. When binned simultaneously by IRX, 4000A
break strength, and M_* these SEDs allow us to determine a low resolution
average attenuation curve for different ranges of M_*. The attenuation curves
thus derived are consistent with a lambda^{-0.7} attenuation law, and we find
no significant variations with M_*. Finally, we show the relationship between
IRX and the global stellar mass surface density and gas-phase-metallicity.
Among star forming galaxies we find a strong correlation between IRX and
stellar mass surface density, even at constant metallicity, a result that is
closely linked to the well-known correlation between IRX and star-formation
rate.Comment: 12 pages, 8 figures, 2 tables, appearing in the Dec 2007 GALEX
special issue of ApJ Supp (29 papers
Extinction Corrected Star Formation Rates Empirically Derived from Ultraviolet-Optical Colors
Using a sample of galaxies from the Sloan Digital Sky Survey spectroscopic
catalog with measured star-formation rates (SFRs) and ultraviolet (UV)
photometry from the GALEX Medium Imaging Survey, we derived empirical linear
correlations between the SFR to UV luminosity ratio and the UV-optical colors
of blue sequence galaxies. The relations provide a simple prescription to
correct UV data for dust attenuation that best reconciles the SFRs derived from
UV and emission line data. The method breaks down for the red sequence
population as well as for very blue galaxies such as the local ``supercompact''
UV luminous galaxies and the majority of high redshift Lyman Break Galaxies
which form a low attenuation sequence of their own.Comment: 20 pages, 11 figures, accepted for publication in the ApJS GALEX
special issu
The Recent Star Formation in NGC 6822: an Ultraviolet Study
We characterize the star formation in the low-metallicity galaxy NGC 6822
over the past few hundred million years, using GALEX far-UV (FUV, 1344-1786 A)
and near-UV (NUV, 1771-2831 A) imaging, and ground-based Ha imaging. From GALEX
FUV image, we define 77 star-forming (SF) regions with area >860 pc^2, and
surface brightness <=26.8 mag(AB)arcsec^-2, within 0.2deg (1.7kpc) of the
center of the galaxy. We estimate the extinction by interstellar dust in each
SF region from resolved photometry of the hot stars it contains: E(B-V) ranges
from the minimum foreground value of 0.22mag up to 0.66+-0.21mag. The
integrated FUV and NUV photometry, compared with stellar population models,
yields ages of the SF complexes up to a few hundred Myr, and masses from 2x10^2
Msun to 1.5x10^6 Msun. The derived ages and masses strongly depend on the
assumed type of interstellar selective extinction, which we find to vary across
the galaxy. The total mass of the FUV-defined SF regions translates into an
average star formation rate (SFR) of 1.4x10^-2 Msun/yr over the past 100 Myr,
and SFR=1.0x10^-2 Msun/yr in the most recent 10 Myr. The latter is in agreement
with the value that we derive from the Ha luminosity, SFR=0.008 Msun/yr. The
SFR in the most recent epoch becomes higher if we add the SFR=0.02 Msun/yr
inferred from far-IR measurements, which trace star formation still embedded in
dust (age <= a few Myr).Comment: Accepted for publication in ApJ, 21 pages, 6 figures, 3 table
Self-consistent radiative corrections to false vacuum decay
With the Higgs mass now measured at the sub-percent level, the potential metastability of the electroweak vacuum of the Standard Model (SM) motivates renewed study of false vacuum decay in quantum field theory. In this note, we describe an approach to calculating quantum corrections to the decay rate of false vacua that is able to account fully and self-consistently for the underlying inhomogeneity of the solitonic tunneling configuration. We show that this method can be applied both to theories in which the instability arises already at the level of the classical potential and those in which the instability arises entirely through radiative effects, as is the case for the SM Higgs vacuum. We analyse two simple models in the thin-wall regime, and we show that the modifications of the one-loop corrections from accounting fully for the inhomogeneity can compete at the same level as the two-loop homogeneous corrections
- …