543 research outputs found

    MRI of the Ankle and Hindfoot

    Full text link
    Magnetic Resonance Imaging (MRI) is the diagnostic modality of choice for evaluation of traumatic ligamentous and tendinous injuries of the ankle and hindfoot. MRI is also valuable in the detection of occult bony trauma, osteochondral injuries, avascular necrosis, osteomyelitis, and a variety of other osseous conditions. This unit presents basic protocols for T1‐ and T2‐weighted sequences and short tau inversion recovery (STIR) imaging. Additional imaging following intravenous gadolinium is indicated in selected cases.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145234/1/cpmia2501.pd

    Hazardous near Earth asteroid mitigation campaign planning based on uncertain information on fundamental asteroid characteristics

    Get PDF
    Given a limited warning time, an asteroid impact mitigation campaign would hinge on uncertainty-based information consisting of remote observational data of the identified Earth-threatening object, general knowledge of near-Earth asteroids (NEAs), and engineering judgment. Due to these ambiguities, the campaign credibility could be profoundly compromised. It is therefore imperative to comprehensively evaluate the inherent uncertainty in deflection and plan the campaign accordingly to ensure successful mitigation. This research demonstrates dual-deflection mitigation campaigns consisting of primary (instantaneous/quasi-instantaneous) and secondary (slow-push) deflection missions, where both deflection efficiency and campaign credibility are taken into account. The results of the dual-deflection campaign analysis show that there are trade-offs between the competing aspects: the launch cost, mission duration, deflection distance, and the confidence in successful deflection. The design approach is found to be useful for multi-deflection campaign planning, allowing us to select the best possible combination of missions from a catalogue of campaign options, without compromising the campaign credibility

    Diagnostic accuracy of DXA compared to conventional spine radiographs for the detection of vertebral fractures in children

    Get PDF
    Objectives In children, radiography is performed to diagnose vertebral fractures and dual energy x-ray absorptiometry (DXA) to assess bone density. In adults, DXA assesses both. We aimed to establish whether DXA can replace spine radiographs in assessment of paediatric vertebral fractures. Methods Prospectively, lateral spine radiographs and lateral spine DXA of 250 children performed on the same day were independently scored by three radiologists using the simplified algorithm based qualitative technique and blinded to results of the other modality. Consensus radiograph read and second read of 100 random images were performed. Diagnostic accuracy, inter/intraobserver and intermodality agreements, patient/carer experience and radiation dose were assessed. Results Average sensitivity and specificity (95% confidence interval) in diagnosing one or more vertebral fractures requiring treatment was 70% (58%-82%) and 97% (94%- 100%) respectively for DXA and 74% (55%-93%) and 96% (95%-98%) for radiographs. Fleiss’ kappa for interobserver and average kappa for intraobserver reliability were 0.371 and 0.631 respectively for DXA and 0.418 and 0.621 for radiographs. Average effective dose was 41.9”Sv for DXA and 232.7”Sv for radiographs. Image quality was similar. Conclusion Given comparable image quality and non-inferior diagnostic accuracy, lateral spine DXA should replace conventional radiographs for assessment of vertebral fractures in children

    Genetic Analysis of High Protein Content in ‘AC Proteus’ Related Soybean Populations Using SSR, SNP, DArT and DArTseq Markers

    Get PDF
    Key message: Several AC Proteus derived genomic regions (QTLs, SNPs) have been identified which may prove useful for further development of high yielding high protein cultivars and allele-specific marker developments. High seed protein content is a trait which is typically difficult to introgress into soybean without an accompanying reduction in seed yield. In a previous study, ‘AC Proteus’ was used as a high protein source and was found to produce populations that did not exhibit the typical association between high protein and low yield. Five high x low protein RIL populations and a high x high protein RIL population were evaluated by either quantitative trait locus (QTL) analysis or bulk segregant analyses (BSA) following phenotyping in the field. QTL analysis in one population using SSR, DArT and DArTseq markers found two QTLs for seed protein content on chromosomes 15 and 20. The BSA analyses suggested multiple genomic regions are involved with high protein content across the five populations, including the two previously mentioned QTLs. In an alternative approach to identify high protein genes, pedigree analysis identified SNPs for which the allele associated with high protein was retained in seven high protein descendants of AC Proteus on chromosomes 2, 17 and 18. Aside from the two identified QTLs (five genomic regions in total considering the two with highly elevated test statistic, but below the statistical threshold and the one with epistatic interactions) which were some distance from Meta-QTL regions and which were also supported by our BSA analysis within five populations. These high protein regions may prove useful for further development of high yielding high protein cultivars

    Making things happen : a model of proactive motivation

    Get PDF
    Being proactive is about making things happen, anticipating and preventing problems, and seizing opportunities. It involves self-initiated efforts to bring about change in the work environment and/or oneself to achieve a different future. The authors develop existing perspectives on this topic by identifying proactivity as a goal-driven process involving both the setting of a proactive goal (proactive goal generation) and striving to achieve that proactive goal (proactive goal striving). The authors identify a range of proactive goals that individuals can pursue in organizations. These vary on two dimensions: the future they aim to bring about (achieving a better personal fit within one’s work environment, improving the organization’s internal functioning, or enhancing the organization’s strategic fit with its environment) and whether the self or situation is being changed. The authors then identify “can do,” “reason to,” and “energized to” motivational states that prompt proactive goal generation and sustain goal striving. Can do motivation arises from perceptions of self-efficacy, control, and (low) cost. Reason to motivation relates to why someone is proactive, including reasons flowing from intrinsic, integrated, and identified motivation. Energized to motivation refers to activated positive affective states that prompt proactive goal processes. The authors suggest more distal antecedents, including individual differences (e.g., personality, values, knowledge and ability) as well as contextual variations in leadership, work design, and interpersonal climate, that influence the proactive motivational states and thereby boost or inhibit proactive goal processes. Finally, the authors summarize priorities for future researc

    Identifying crop variants with high resistant starch content to maintain healthy glucose homeostasis

    Get PDF
    Identifying dietary tools that prevent disordered insulin secretion from pancreatic ÎČ‐cells is an attractive strategy to combat the increasing prevalence of type 2 diabetes. Dietary resistant starch has been linked to improvements in the function of ÎČ‐cells, possibly via increased colonic fermentation and production of short‐chain fatty acids (SCFAs). Increasing the resistant starch content of commonly consumed foods could therefore maintain glucose homeostasis at the population level. As part of Biotechnology and Biological Sciences Research Council (BBSRC) Diet and Health Research Industry Club (DRINC) initiative, variants of Pisum sativum L. (pea) are being investigated to identify the features of pea starch that make it resistant to digestion and available for colonic fermentation and SCFA production. Parallel in vitro and in vivo studies are being conducted using both whole pea seeds and pea flour to facilitate a better understanding of how cells in the pea cotyledons are affected by processing and, in turn, how this influences starch digestibility. Trials in human volunteers are being used to monitor a full spectrum of short‐ and long‐term physiological responses relevant to pancreatic ÎČ‐cell function and glucose homeostasis. This project is providing new insights into variants of crops that are associated with the specific types of resistant starch that provide the best protection against defects in insulin secretion and function
    • 

    corecore