53,771 research outputs found
Basic research in wake vortex alleviation using a variable twist wing
The variable twist wing concept was used to investigate the relative effects of lift and turbulence distribution on the rolled up vortex wake. Several methods of reducing the vortex strength behind an aircraft were identified. These involve the redistribution of lift spanwise on the wing and drag distribution along the wing. Initial attempts to use the variable twist wing velocity data to validate the WAKE computer code have shown a strong correlation, although the vorticity levels were not exactly matched
Minimum energy, liquid hydrogen supersonic cruise vehicle study
The potential was examined of hydrogen-fueled supersonic vehicles designed for cruise at Mach 2.7 and at Mach 2.2. The aerodynamic, weight, and propulsion characteristics of a previously established design of a LH2 fueled, Mach 2.7 supersonic cruise vehicle (SCV) were critically reviewed and updated. The design of a Mach 2.2 SCV was established on a corresponding basis. These baseline designs were then studied to determine the potential of minimizing energy expenditure in performing their design mission, and to explore the effect of fuel price and noise restriction on their design and operating performance. The baseline designs of LH2 fueled aircraft were than compared with equivalent designs of jet A (conventional hydrocarbon) fueled SCV's. Use of liquid hydrogen for fuel for the subject aircraft provides significant advantages in performance, cost, noise, pollution, sonic boom, and energy utilization
Study of LH2 fueled subsonic passenger transport aircraft
The potential of using liquid hydrogen as fuel in subsonic transport aircraft was investigated to explore an expanded matrix of passenger aircraft sizes. Aircraft capable of carrying 130 passengers 2,780 km (1500 n.mi.); 200 passengers 5,560 km (3000 n.mi.); and 400 passengers on a 9,265 km (5000 n.mi.) radius mission, were designed parametrically. Both liquid hydrogen and conventionally fueled versions were generated for each payload/range in order that comparisons could be made. Aircraft in each mission category were compared on the basis of weight, size, cost, energy utilization, and noise
Chameleon effect and the Pioneer anomaly
The possibility that the apparent anomalous acceleration of the Pioneer 10
and 11 spacecraft may be due, at least in part, to a chameleon field effect is
examined. A small spacecraft, with no thin shell, can have a more pronounced
anomalous acceleration than a large compact body, such as a planet, having a
thin shell. The chameleon effect seems to present a natural way to explain the
differences seen in deviations from pure Newtonian gravity for a spacecraft and
for a planet, and appears to be compatible with the basic features of the
Pioneer anomaly, including the appearance of a jerk term. However, estimates of
the size of the chameleon effect indicate that its contribution to the
anomalous acceleration is negligible. We conclude that any inverse-square
component in the anomalous acceleration is more likely caused by an unmodelled
reaction force from solar-radiation pressure, rather than a chameleon field
effect.Comment: 16 pages; to appear in Phys.Rev.
Turbid water measurements of remote sensing penetration depth at visible and near-infrared wavelength
Remote sensing of water quality is dicussed. Remote sensing penetration depth is a function both of water type and wavelength. Results of three tests to help demonstrate the magnitude of this dependence are presented. The water depth to which the remote-sensor data was valid was always less than that of the Secchi disk depth, although not always the same fraction of that depth. The penetration depths were wavelength dependent and showed the greatest variation for the water type with largest Secchi depth. The presence of a reflective plate, simulating a reflective subsurface, increased the apparent depth of light penetration from that calculated for water of infinite depth
Aerodynamic tests and analysis of a turbojet-boosted launch vehicle concept (spacejet) over a Mach number range of 1.50 to 2.86
Results from analytical and experimental studies of the aerodynamic characteristics of a turbojet-boosted launch vehicle concept through a Mach number range of 1.50 to 2.86 are presented. The vehicle consists of a winged orbiter utilizing an area-ruled axisymmetric body and two winged turbojet boosters mounted underneath the orbiter wing. Drag characteristics near zero lift were of prime interest. Force measurements and flow visualization techniques were employed. Estimates from wave drag theory, supersonic lifting surface theory, and impact theory are compared with data and indicate the ability of these theories to adequately predict the aerodynamic characteristics of the vehicle. Despite the existence of multiple wings and bodies in close proximity to each other, no large scale effects of boundary layer separation on drag or lift could be discerned. Total drag levels were, however, sensitive to booster locations
Renormalization Group Treatment of Nonrenormalizable Interactions
The structure of the UV divergencies in higher dimensional nonrenormalizable
theories is analysed. Based on renormalization operation and renormalization
group theory it is shown that even in this case the leading divergencies
(asymptotics) are governed by the one-loop diagrams the number of which,
however, is infinite. Explicit expression for the one-loop counter term in an
arbitrary D-dimensional quantum field theory without derivatives is suggested.
This allows one to sum up the leading asymptotics which are independent of the
arbitrariness in subtraction of higher order operators. Diagrammatic
calculations in a number of scalar models in higher loops are performed to be
in agreement with the above statements. These results do not support the idea
of the na\"ive power-law running of couplings in nonrenormalizable theories and
fail (with one exception) to reveal any simple closed formula for the leading
terms.Comment: LaTex, 11 page
- …
