481 research outputs found

    MYCO WELL D-ONE detection of Ureaplasma spp. and Mycoplasma hominis in sexual health patients in Wales

    Get PDF
    The genital mycoplasmas are a unique group of inherently antibiotic-resistant sexually transmitted bacteria, often associated with non-gonococcal urethritis and bacterial vaginosis. The MYCO WELL D-ONE is a culture-based assay that aims to detect these organisms whilst concurrently screening them for antibiotic resistance. Urine and/or swabs from 856 informed and consented participants attending Welsh sexual health clinics were subjected to MYCO WELL D-ONE analysis, alongside qPCR and culture titration methodologies to determine sensitivity, specificity, PPV, NPV and accuracy. Resistance was confirmed by CLSI-compliant susceptibility testing and genetic mechanisms determined. The MYCO WELL D-ONE displayed a sensitivity and specificity of 91.98% and 96.44% for the detection of Ureaplasma spp., with sensitivity and specificity values of 78.23% and 98.84% for Mycoplasma hominis, compared with qPCR. Swabs harboured significantly greater bacterial loads than urine samples for both Ureaplasma spp. and M. hominis. Levofloxacin resistance rates, mediated by Ser83Leu mutation in ParC, for Ureaplasma spp. were 0.54%. Tetracycline resistance rates, mediated by tet(M), were 0.54% and 2% for Ureaplasma spp. and M. hominis, respectively; sequence analysis of tet(M)-positive Ureaplasma spp. and M. hominis strains isolated from a single individual confirmed separate resistance gene origins. The MYCO WELL D-ONE is a sensitive and specific assay for the detection of Ureaplasma spp. and M. hominis in genitourinary medicine samples, facilitating the accurate detection of these organisms within low-technology environments. While good for antibiotic resistance screening, accurate confirmation by MIC determination or molecular methods are required, and more optimally performed on urine samples

    Improving the estimation of deep-sea megabenthos biomass: dimension to wet weight conversions for abyssal invertebrates

    Get PDF
    Deep-sea megafaunal biomass has typically been assessed by sampling with benthic sledges and trawls, but non-destructive methods, particularly photography, are becoming increasingly common. Estimation of individual wet weight in seabed photographs has been achieved using equations obtained from measured trawl-caught specimens for a limited number of taxa. However, a lack of appropriate conversion factors has limited estimation across taxa encompassing whole communities. Here we compile relationships between measured body dimensions and preserved wet weights for a comprehensive catalogue of abyssal epibenthic megafauna, using ~47,000 specimens from the Porcupine Abyssal Plain (NE Atlantic) housed in the Discovery Collections. The practical application of the method is demonstrated using an extremely large dataset of specimen measurements from seabed photographs taken in the same location. We also collate corresponding field data on fresh wet weight, to estimate the impact of fixation in formalin and preservation in industrial denatured alcohol on the apparent biomass. Taxa with substantial proportions of soft tissues lose 35 to 60% of their wet weight during preservation, while those with greater proportions of hard tissues lose 10 to 20%. Our total estimated fresh wet weight biomass of holothurians and cnidarians in the photographic survey was ~20 times the previous estimates of total invertebrate biomass based on trawl catches. This dramatic uplift in megabenthic biomass has significant implications for studies of standing stocks, community metabolism, and numerical modelling of benthic carbon flows

    A generalised volumetric method to estimate the biomass of photographically surveyed benthic megafauna

    Get PDF
    Biomass is a key variable for understanding the stocks and flows of carbon and energy in the environment. The quantification of megabenthos biomass (body size ≥ 1 cm) has been limited by their relatively low abundance and the difficulties associated with quantitative sampling. Developments in robotic technology, particularly autonomous underwater vehicles, offer an enhanced opportunity for the quantitative photographic assessment of the megabenthos. Photographic estimation of biomass has typically been undertaken using taxon-specific length-weight relationships (LWRs) derived from physical specimens. This is problematic where little or no physical sampling has occurred and/or where key taxa are not easily sampled. We present a generalised volumetric method (GVM) for the estimation of biovolume as a predictor of biomass. We validated the method using fresh trawl-caught specimens from the Porcupine Abyssal Plain Sustained Observatory (northeast Atlantic), and we demonstrated that the GVM has a higher predictive capability and a lower standard error of estimation than the LWR method. GVM and LWR approaches were tested in parallel on a photographic survey in the Celtic Sea. Among the 75% of taxa for which LWR estimation was possible, highly comparable biomass values and distribution patterns were determined by both methods. The biovolume of the remaining 25% of taxa increased the total estimated standing stock by a factor of 1.6. Additionally, we tested inter-operator variability in the application of the GVM, and we detected no statistically significant bias. We recommend the use of the GVM where LWRs are not available, and more generally given its improved predictive capability and its independence from the taxonomic, temporal, and spatial, dependencies known to impact LWRs

    An association between a cusk eel (Bassozetus sp.) and a black coral (Schizopathes sp.) in the deep western Indian Ocean

    Get PDF
    Detailed observations in the deep sea can reveal previously unknown behaviour, species interactions and fine-scale habitat heterogeneity. Here, the first in situ images of the black coral Schizopathes sp. (Anthozoa: Antipatharia) in the deep western Indian Ocean have been obtained from remotely operated vehicle video footage and time-lapse photography. In these images, there appears to be an association with the cusk eel Bassozetus (Family: Ophidiidae). In the primary observation, chance encounters revealed the fish interacted with the anitpatharian on multiple occasions over several days. Subsequent time-lapse camera footage showed the fish remained almost exclusively underneath the antipatharian for the duration of a 30-h deployment. Excursions from the cover of the antipatharian were for less than 2 min. The primary observation is supported by two similar encounters in the same region. Observed reduction in the tail-beat frequency of the fish under the antipatharian suggests reduced energy requirements for the ophidiid in this position. The observations demonstrate the role that even individual coral colonies play as a source of three-dimensional structure, providing habitat heterogeneity in the deep sea

    “Like, pissing yourself is not a particularly attractive quality, let’s be honest” : learning to contain through youth, adulthood, disability and sexuality

    Get PDF
    In this article, we (re)conceptualise containment in the context of youth, gender, disability, crip sex/uality and pleasure. We begin by exploring eugenic histories of containment and trace the ways in which the anomalous embodiment of disabled people (Shildrick, 2009) remains vigorously policed within current neo-eugenic discourse. Drawing upon data from two corresponding research studies, we bring the lived experiences of disabled young people to the fore. We explore their stories of performing, enacting and realising containment: containing the posited unruliness of the leaky impaired body; containment as a form of (gendered) labour (Liddiard, 2013a); containment as a marker of normalisation and sexualisation, and thus a necessary component for ableist adulthood (Slater, 2015). Thus, we theorise crip embodiment as permeable, porous and thus problematic in the context of the impossibly bound compulsory (sexually) able adult body (McRuer, 2006). We suggest that the implicit learning of containment is therefore required of disabled young people, particularly women, to counter infantilising and desexualising discourse and cross the 'border zone of youth' (Lesko, 2012) and achieve normative neoliberal adulthood. Crucially, however, we examine the meaning of what we argue are important moments of messiness: the precarious localities of leakage which disrupt containment and thus the 'reality' of the 'able' 'adult' body. We conclude by considering the ways in which these bodily ways of being contour both material experiences of pleasure and the right(s) to obtain it

    Deep-sea sponge aggregations (Pheronema carpenteri) in the Porcupine Seabight (NE Atlantic) potentially degraded by demersal fishing

    Get PDF
    Deep-sea sponge aggregations are widely recognised as features of conservation interest and vulnerable marine ecosystems that may particularly require protection from the impact of commercial bottom trawl fishing. In 2011 we revisited deep-sea sponge aggregations in the Porcupine Seabight (NE Atlantic, c. 1200 m water depth) originally described by Rice, Thurston and New (1990, Prog. Oceanogr. 24: 179-196) from surveys in 1983/4. Using an off-bottom towed camera system, broadly comparable to the bottom-towed system originally employed, we resurveyed four key transects detailed in that publication. In the intervening years, there has been a substantial increase in deep-water fishing activity; our primary objectives were therefore to establish the continued presence of Pheronema carpenteri (Hexactinellida, Pheronematidae), the current status of the sponge population, and whether there was any evidence of bottom trawl fishing impact on the sponges and their associated fauna. We noted a very substantial reduction in the standing stock of sponges: in Rice et al.'s (loc. cit.) peak abundance depth range (1210 – 1250 m) numerical density declined from 1.09 to 0.03 ind m-2, and biomass density from 246 to 4 gwwt m-2, between the surveys. Our assessment of available vessel monitoring data suggested that commercial bottom trawling had been occurring in the area, with some indication of focussed effort in the sponge's bathymetric range. We also recorded the presence of multiple apparent seafloor trawl marks on two of the transects. Despite the potential disturbance, the presence of sponge aggregations continued to exert a statistically significant positive influence on the diversity of the local megafaunal assemblage. Similarly, faunal composition also exhibited a statistically significant trend with P. carpenteri numerical density. Megafaunal numerical density, particularly that of ascideans, appeared to be enhanced in the core of Rice et al.'s (loc. cit.) peak abundance depth range potentially reflecting the residual effect of sponge spicule mats. Our observations were suggestive of a substantive impact by bottom trawl fishing; however, a definitive assessment of cause and effect was not possible, being hampered by a lack of temporal studies in the intervening period. Other causes and interpretations were plausible and suggested the need for: (i) a precautionary approach to management, (ii) an improved understanding of sponge natural history, and (iii) temporal monitoring (e.g. seafloor sponge habitat cover)

    Humoral and cellular responses to SARS-CoV-2 in patients with B-cell haematological malignancies improve with successive vaccination

    Get PDF
    Patients with haematological malignancies are more likely to have poor responses to vaccination. Here we provide detailed analysis of the humoral and cellular responses to COVID-19 vaccination in 69 patients with B-cell malignancies. Measurement of anti-spike IgG in serum demonstrated a low seroconversion rate with 27.1% and 46.8% of patients seroconverting after the first and second doses of vaccine, respectively. In vitro pseudoneutralisation assays demonstrated a poor neutralising response, with 12.5% and 29.5% of patients producing a measurable neutralising titre after the first and second doses, respectively. A third dose increased seropositivity to 54.3% and neutralisation to 51.5%, while a fourth dose further increased both seropositivity and neutralisation to 87.9%. Neutralisation titres post-fourth dose showed a positive correlation with the size of the B-cell population measured by flow cytometry, suggesting an improved response correlating with recovery of the B-cell compartment after B-cell depletion treatments. In contrast, interferon gamma ELISpot analysis showed a largely intact T-cell response, with the percentage of patients producing a measurable response boosted by the second dose to 75.5%. This response was maintained thereafter, with only a small increase following the third and fourth doses, irrespective of the serological response at these timepoints

    Monitoring mosaic biotopes in a marine conservation zone by autonomous underwater vehicle

    Get PDF
    The number of marine protected areas (MPAs) has increased dramatically in the last decade and poses a major logistic challenge for conservation practitioners in terms of spatial extent and the multiplicity of habitats and biotopes that now require assessment. Photographic assessment by autonomous underwater vehicle (AUV) enables the consistent description of multiple habitats, in our case including mosaics of rock and sediment. As a case study, we used this method to survey the Greater Haig Fras marine conservation zone (Celtic Sea, northeast Atlantic). We distinguished 7 biotopes, detected statistically significant variations in standing stocks, species density, species diversity, and faunal composition, and identified significant indicator species for each habitat. Our results demonstrate that AUV‐based photography can produce robust data for ecological research and practical marine conservation. Standardizing to a minimum number of individuals per sampling unit, rather than to a fixed seafloor area, may be a valuable means of defining an ecologically appropriate sampling unit. Although composite sampling represents a change in standard practice, other users should consider the potential benefits of this approach in conservation studies. It is broadly applicable in the marine environment and has been successfully implemented in deep‐sea conservation and environmental impact studies. Without a cost‐effective method, applicable across habitats, it will be difficult to further a coherent classification of biotopes or to routinely assess their conservation status in the rapidly expanding global extent of MPAs
    corecore