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Abstract 8 

Detailed observations in the deep sea can reveal previously unknown behaviour, species interactions and fine-9 

scale habitat heterogeneity.  Here, the first in situ images of the black coral Schizopathes sp. (Anthozoa: 10 

Antipatharia) in the deep western Indian Ocean have been obtained from remotely operated vehicle video 11 

footage and time-lapse photography. In these images there appears to be an association with the cusk eel 12 

Bassozetus (Family: Ophidiidae). In the primary observation, chance encounters revealed the fish interacted 13 

with the anitpatharian on multiple occasions over several days. Subsequent time-lapse camera footage 14 

showed the fish remained underneath the antipatharian almost exclusively for the duration of a 30 hour 15 

deployment. Excursions from the cover of the antipatharian were for less than two minutes. The primary 16 

observation is supported by two similar encounters in the same region. Observed reduction in the tail-beat 17 

frequency of the fish under the antipatharian suggests reduced energy requirements for the ophidiid in this 18 

position. The observations demonstrate the role that even individual coral colonies play as a source of three 19 

dimensional structure, providing habitat heterogeneity in the deep sea. 20 
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Introduction 31 

Little is known about the ecology of most deep-sea species and intraspecific interactions are particularly poorly 32 

studied because of a lack of detailed observations in such remote areas. Such data are required in order to 33 

improve understanding of deep-sea ecosystems. In this paper we report in situ observations from Remotely 34 

Operated Vehicle (ROV) video footage and time-lapse photography of an association between a black coral 35 

(Antipatharia) and a cusk eel (Ophidiidae) in deep water in the western Indian Ocean off Tanzania. 36 

Many fish species have an innate propensity to seek contact with physical structures,  demonstrated by the 37 

effectiveness of open-ocean fish aggregating devices (FADS) (Relini et al. 2000). There are a number of 38 

hypotheses as to why this may occur, and the species involved and local habitat conditions likely influence this 39 

behaviour. In deep water, complex structures such as reef-forming corals create habitat heterogeneity that 40 

supports many invertebrate species (Buhl-Mortensen and Mortensen 2004) and fishes (Du Preez and 41 

Tunnicliffe 2011). At a fine scale, associations such as juvenile ophidiids using echinothuriid urchins, are 42 

thought to protect from predators and provide shelter from currents (Moore and Auster 2009). The use of 43 

three-dimensional structure as an energetic refuge in a food-poor ecosystem, such as the deep sea, is probably 44 

advantageous.  Furthermore, the complex biogenic structures may enhance feeding opportunities for 45 

associated species as the arborescent three-dimensional structure disrupts laminar bottom currents inducing 46 

local turbulence (Buhl-Mortensen et al. 2010) while corals themselves increase flow over their polyps through 47 

action of cilia (Shapiro et al. 2014).  48 

Antipatharians (Hexacorallia) are commonly known as black corals because their proteinaceous axis is black or 49 

dark in colour. They are generally found at depths greater than 50 m (Cairns 2007) and are long-lived and slow 50 

growing. Antipatharians often provide habitat for other organisms such as crustaceans and polychaetes 51 



(Wagner et al. 2012; Wicksten et al. 2014; Wicksten and Heathman 2015), and fishes at a range of water 52 

depths. Gobioid fish have been reported inhabiting Cirripathes sp. in shallow water in the tropical Pacific (Davis 53 

and Cohen 1968), and aggregations of antipatharians such as  Antipathella subpinnata (150-230m) (Deidun et 54 

al. 2014) and  Leiopathes glaberrima (250-400 m)  form “coral gardens” that provide habitat to a variety fish 55 

species (de Matos et al. 2014). Schizopathes Brook, 1989 is a poorly studied genus of antipatharian with three 56 

known species, one of which, S. amplispina Opresko, 1997, was described from the western Indian Ocean 57 

(Opresko 1997). 58 

Cusk eels (Ophidiidae) are found from the upper shelf to hadal depths. They reportedly feed on invertebrates 59 

and fishes (Nielsen and Merrett 2000) but much of their behaviour is unknown. There are thirteen described 60 

species of Bassozetus Gill, 1883 (members of this genus are commonly known as assfish). Six species are 61 

recorded from the western Indian Ocean off Kenya, Madagascar and Mozambique (Bassozetus galatheae, B. 62 

glutinosus, B. compressus, B. elongatus, B. levistomatus and B. robustus). These were mostly collected during 63 

the voyages of the Mabahiss (1932-34), Galathea II (1952), Vityaz (1959-64) and Anton Bruun (1964) (Menzies 64 

et al. 1973). Since those pioneering expeditions there have been limited studies of the deep sea in the western 65 

Indian Ocean, particularly using modern techniques such as ROV survey. Through accessing industry ROVs in a 66 

collaborative project (www.serpentproject.com) at oil drilling locations off Tanzania we report novel 67 

observations of the ophidiid Bassozetus sp. apparently associated with an antipatharian at 1380-1780 m depth 68 

in the western Indian Ocean.  69 

Methods: 70 

The observations presented here were made in 2013 as part of the SERPENT Project (Jones 2009). Data were 71 

collected using a Deep Ocean HD video camera mounted on an Oceaneering International Millennium ROV 72 

deployed from the drill ship Deepsea Metro 1 at three locations (Table 1). Mzia-2 and Mzia-3 were separated 73 

by 9 km and Pweza-3 was a further 160 km north of Mzia-3. The sites were dominated by soft sediment but 74 

Pweza-3 also had some areas of hard substratum. The names Mzia-2, Mzia-3 and Pweza-3 refer to the names 75 

of the drilling locations (Kiswahili names for marine organisms, barracuda and octopus).  76 

Primary Observation 77 



The primary observation of an ophidiiform sheltering under an antipatharian was first made at Mzia-3 on the 78 

4th November 2013 (Supplementary Material: Video 2). The same individual antipatharian with an associated 79 

fish was noted again on the 6th November 2013 (Supplementary Material: Video 3). After these two 80 

observations, a time-lapse camera was positioned 1 m north of the coral for 30 hours (9-10 November 2013). 81 

The time-lapse camera (Insight Pacific Scorpio Plus digital still camera and strobe light) was mounted on a 82 

bespoke frame designed for deployment with industrial ROVs through the SERPENT Project. The camera was 83 

located 100 m from source of drilling disturbance, outside of the obviously disturbed seabed (no drill cuttings 84 

visible) and beyond the expected extent of drilling disturbance (Gates and Jones 2012). Images were taken 85 

every 60 seconds (1829 frames in total). A time-lapse movie was created using the still images in Adobe 86 

Premier Pro to display the data collected (Supplementary Material: Video 1). 87 

Each original frame from the time-lapse camera deployment, prior to cropping for Figure 1 and Supplementary 88 

Material Video 1, was examined and the presence of the fish, its alignment under the antipatharian, notable 89 

behaviour and presence of potential prey items were recorded. The area of seabed imaged and the length of 90 

the ophidiid and antipatharian individuals were estimated using the acceptance angles of the camera and 91 

height of the camera above the seabed, using a three dimensional rotational matrix (Morris et al. 2014), where 92 

pitch was set as the angle of the camera from the vertical and roll and heading were set at zero to obtain the 93 

co-ordinates of the image corners and thus allow area and scale to be determined. Using these methods the 94 

area of seabed imaged was estimated as 8.48 m2. Much of this area was distant and unrealistic to analyse.  95 

Supporting observations 96 

The primary observation is supported by two similar examples acquired during previous field visits at the Mzia-97 

2 and Pweza-3 locations. Both supporting observations were made with the HD camera on the ROV but no 98 

time-lapse deployments were carried out. As part of the wider project 12 km of video footage was collected 99 

over seven sites (1300-2600 m depth) but no further Schizopathes sp. specimens were encountered. 100 

Estimating activity of the fish 101 

Tail beat frequency (TBF) was estimated from the HD video observations as an indication of fish activity (this 102 

was not possible from the time lapse footage because frames were not continuous). One tail beat was 103 

recorded as one complete oscillation of the tail (Ohlberger et al. 2007). This was carried out for the primary 104 

http://www.serpentproject.com/tanzaniacorals/Mzia-2%20observation%2000096.MTS
http://www.serpentproject.com/tanzaniacorals/Mzia-2%20observation%2000026_fish%20disturbed.MTS
http://www.serpentproject.com/tanzaniacorals/timelapse%20of%20coral%20and%20fish%20Mzia-3.mpg


observation and Supporting Observation 2 because the fish appeared to be of comparable size. Tail beat 105 

frequency was not estimated for Supporting Observation 1 because the size of the fishes was not comparable.  106 

As the video clips were short the tail oscillations were counted for discrete sections of footage. No statistics 107 

were carried out on these data because of their limited scope. 108 

Results: 109 

It was not possible to collect the antipatharian specimens, but the distinct triangular shape indicates that the 110 

three observations were Schizopathes sp., of which there are three described species in the genus. Based on 111 

external appearance, the observations appear to be S. amplispina but identification to species is only possible 112 

by examining a collected specimen (D Opresko personal communication). In the images the Schizopathes 113 

specimens were positioned with the holdfast up-current and with the apex and distal end of the pinnules in 114 

contact with the sediment.  115 

Primary observation (Mzia-3): 116 

The main observation of the association between Bassozetus sp. and Schizopathes sp., (termed primary 117 

observation) was observed on two separate occasions by ROV at the Mzia-3 site before the decision to deploy 118 

the time-lapse camera to record it in more detail. The Schizopathes sp. specimen is estimated to be 480 mm in 119 

length from the visible holdfast to the apex. The widest point (lower pinnules) was estimated at 630 mm. 120 

There was a circular impression on the sediment, with a small mound where the holdfast attaches, created as 121 

the pinnules sweep over the seabed as the colony moves in the current. The Bassozetus specimen observed 122 

under this antipatharian was approximately 400 mm in length. The first observation of this association (4th 123 

November 2013) showed Schizopathes sp. with Bassozetus sp. underneath (Supplementary material: Video 2). 124 

The video footage indicates gentle undulation of the Bassozetus specimen’s body with tail beat frequency 125 

estimated at 25.38 min-1 (Table 2). When the same specimens were encountered on 6th November 2013 the 126 

fish was again under the antipatharian (Supplementary Material: Video 3), with an initial tail beat frequency of 127 

28.13 min-1  A second estimate of the tail beat frequency, also under the antipatharian, on 6th November was 128 

considerably higher (40.00 min-1). There appears to be an effect of the ROV on the fish in this instance 129 

resulting in the higher tail beat frequency. As the ROV departed the fish left the cover of the coral swimming 130 

away rapidly (TBF: 57.27 min-1). The fish was not observed to return to the antipatharian at this time.  131 



On return to the primary observation location on 9th November 2013 a Bassozetus sp. specimen was observed 132 

under the antipatharian again. The time-lapse camera was deployed to monitor the fish behaviour at this time. 133 

On this occasion the fish was not visibly disturbed by the presence of the ROV or time-lapse camera. During 134 

the course of the deployment the antipatharian turned approximately 180° in the current, sweeping a circular 135 

pattern over the seabed. The effects of the current were visible in the images as movement of items over the 136 

sediment and the streaming of what appears to be a worm tube. The current was sufficiently strong to move 137 

an item of terrestrial or shallow water plant material into the field of view, which then settled in a depression 138 

in the sediment. In 96% of the time-lapse frames the fish was under the antipatharian with its head orientated 139 

toward the holdfast and tail at the colony apex, demonstrating positive rheotaxis. In 3.7% of the frames 140 

Bassozetus was aligned in the opposite direction or perpendicular to the coral holdfast, on one occasion with 141 

its mouth open. On two occasions the fish left the shelter of the antipatharian, but returned in the subsequent 142 

image. Potential prey items (suprabenthic crustaceans) were present in 26 images. Occasionally other fishes 143 

such as halosaurs and ophidiiforms were observed in the time-lapse images including small individuals that 144 

could potentially be a food source for the Bassozetus specimen. 145 

Supporting Observation 1 (Mzia-2): 146 

At Mzia-2 (1622 m depth) another Schizopathes antipatharian was observed. (Figure 2a, Supplementary 147 

Material: Video 4). The 62 s clip shows a smaller antipatharian with a small unidentified fish (probably a 148 

juvenile ophidiid) in similar orientation to the primary observation.  149 

Supporting Observation 2 (Pweza-3): 150 

The third example (1380 m depth) was another similar ophidiid swimming in close proximity, but at no point 151 

underneath a Schizopathes sp. antipatharian (Figure 2 b, Supplementary Material: Video 5. Some crustaceans 152 

were also visible beneath the antipatharian (shown by arrows in Figure 2). The ophidiid was initially at greater 153 

distance from the anipatharian but gradually moved in towards the coral and remained in close proximity for 154 

the remainder of the clip. In two video clips of the fish holding station TBF was 36.23 and 34.96 min-1. In 155 

another short clip of the fish it was actively swimming away from the ROV (TBF: 56.00 min-1).  156 

Discussion 157 

http://www.serpentproject.com/tanzaniacorals/Mzia-2%20observation%2000004.MTS
http://www.serpentproject.com/tanzaniacorals/Mzia-2%20observation%2000004.MTS
http://www.serpentproject.com/tanzaniacorals/Pweza%20observation%20-%2000043.MTS


To our knowledge the in situ images presented here are the first of what is most likely Schizopathes amplispina 158 

(D. Opresko personal communication). S. amplispina was originally described from trawled specimens 159 

collected in 1964 at 1500-1600 m depth in the western Indian Ocean, east of Madagascar during the 160 

International Indian Ocean Expedition (Opresko 1997). The estimated length of the specimen in the primary 161 

observation (480 mm) is larger than the 420 mm quoted by Opresko (1997) for the type specimen of S. 162 

amplispina. These three observations and the locality and depth of the type specimen suggest the continental 163 

slope in the western Indian Ocean is of interest in the future study of Schizopathes. The appearance of the 164 

antipatharian, with the apex of the colony and the pinnules, sweeping over the seabed, leaving a circular 165 

impression in the sediment resembles the “unidentified fern-like attached organisms” described from early 166 

deep-sea photography in the Bellingshausen Sea, Southern Ocean (Hollister and Heezen 1967).  167 

Six Bassozetus species are known from the deep western Indian Ocean. The specimen in the primary 168 

observation was estimated to be 400 mm in length, within the size range of members of the genus (maximum 169 

standard length of Bassozetus species ranges from 221-663 mm) (Nielsen and Merrett 2000). The reason for its 170 

presence under the antipatharian is not clear from the footage but at least two examples of this behaviour and 171 

the fact that the fish departed and returned to the antipatharian on several occasions in the primary 172 

observation suggest it is beneficial. 173 

Returning to the antipatharian indicates it is useful to the fish as a geospatial marker, at least on the time-scale 174 

studied here. Nothing is known of the range of Bassozetus and whether the genus utilizes a territory or home 175 

range. Knowledge of the range of deep-water fishes is generally poor. Pop-up Satellite Archival Tagging studies 176 

are limited to the gulper shark Centrophorus squamosus, which reportedly travel long distances, likely within a 177 

relatively narrow depth range (Rodríguez-Cabello and Sánchez 2014) and information on other species inferred 178 

from stable isotope analysis (Trueman et al. 2012), for example ontogenetic changes in range (Longmore et al. 179 

2014). 180 

A coral structure may be a valuable reference point to indicate an area of higher current flow (Morris et al. 181 

2012) and possibly increased encounters with benthopelagic food sources. Evidence from the images 182 

demonstrates sufficient current to change the orientation of the antipatharian and to move material over the 183 

seabed. Association with a structure likely provides the benefit of shelter which would enable reduced energy 184 



expenditure to achieve positive rheotaxis. The Tail Beat Frequency observations, although limited, do support 185 

reduced energy expenditure under the coral. The values recorded were comparable to unpublished TBF data 186 

(29.8 min-1) of Bassozetus (levistomatus?) from the Kermadec trench (T.D. Linley personal communication). The 187 

distinct triangular shape of Schizopathes sp. seems particularly suitable as a shelter for a fish of the size 188 

demonstrated here. Several similar observations of fishes apparently using corals for shelter are shown in 189 

(Figure 3 a-c) with the cusk eel Barathrites sp. nestling close to a gorgonian, probably Acanella sp., of particular 190 

interest (Figure 3 b) (Hecker and Blechschmidt 1980). 191 

At hadal depths Bassozetus sp. appears at baited camera experiments (Jamieson et al. 2009) suggesting the 192 

may scavange or feed on other scavenging fauna, and ostracods have been reported from their gut contents 193 

(Angel 1973) as well as the remains of fish, polychaetes and crustaceans (Nielsen and Merrett 2000). Deep-sea 194 

video observations of other ophidiids (e.g. Bassogigas sp. http://archive.serpentproject.com/2188/ and 195 

Acanthonus armatus http://archive.serpentproject.com/2186/, A Gates personal observations) suggest they 196 

swim slowly, hovering in the benthic boundary layer.  If they feed on benthopelagic prey items that they 197 

encounter in this way it is feasible that holding station, perhaps aided by the use of shelter, may increase 198 

encounters with their food source. The occurrence of 26 suprabenthic crustaceans in the time-lapse images 199 

supports this suggestion. The short excursions out of the shelter of the coral may be for the purpose of attacks 200 

on passing prey organisms. If such a strategy is employed the individual observed was using a feeding strategy 201 

similar to ambush predators of the deep-sea floor such as lizard fish (Bathysaurus sp.), instead of active 202 

foraging as other ophidiids are thought to use (Gartner Jr et al. 1997). It is also possible that the coral itself 203 

attracts prey for the ophidiid. There were two crustaceans under the antipatharian shown in Supporting 204 

Observation 2 (Figure 2), perhaps for protection from predators, as demonstrated by caridean shrimp 205 

Bathypalaemonella serratipalma inhabiting octocorals (Watling 2011). There are also various other 206 

documented crustacean associations with antipatharians (Wicksten et al. 2014; Wicksten and Heathman 207 

2015). It seems unlikely that the fish feeds on the coral itself, given the condition of the antipatharians in the 208 

images, although in shallow water fish have occasionally been reported feeding on anthipatharians (Wagner et 209 

al. 2012).    210 

Avoidance of predators has been suggested as a reason for ophidiid association with other species. The closely 211 

related ophidiid, Barathrites sp., make use of the venomous spines of Echinothuriid urchins for protection 212 

http://archive.serpentproject.com/2188/
http://archive.serpentproject.com/2186/


from currents and predators (Moore and Auster 2009). The animals reported by Moore and Auster (2009) 213 

were juveniles and appear to be of similar size to the fish in Supporting Observation 2. It is feasible that the 214 

Bassozetus sp. here gains similar benefit by positioning itself under the complex structure of a larger coral 215 

colony which may camouflage the fish (non-visual crypsis, Ruxton, 2009), disrupting  a predator seeking mobile 216 

fish prey, perhaps even benefitting from  the presence of the spines or secondary metabolites of the 217 

antipatharian. Indeed, there are examples suggesting organisms use corals as a means of anti-predator 218 

defence, including the crab Paromola sp., which exhibits coral carrying behaviour (Braga-Henriques et al. 219 

2012). A variety of concealment strategies are reviewed by Guinot and Wickstein (2015), including those that 220 

utilise corals. At 400 mm in length the Bassozetus specimen in the Primary Observation is among the larger 221 

species encountered in the study area so predators seem limited. Potential predators at this depth include 222 

Centrophorus sp., which attended baited camera experiments at the same and nearby sites (A. Gates personal 223 

observations) and do feed on demersal fishes (Dunn et al. 2010) or large deep-diving epi-pelagic organisms.  224 

For example recent ROV observations from nearby include a Scalloped Hammerhead (Sphyrna lewini) at the 225 

seabed at over 1000 m depth (Moore and Gates 2015).  226 

While it is not possible to ascertain the reason for the association reported here, the observations do show a 227 

previously unreported opportunistic facultative commensalism between two poorly studied species. The 228 

observations demonstrate the role that even individual coral colonies play in providing habitat heterogeneity 229 

in the deep sea and provide an insight into behaviour of deep-sea fishes. Furthermore the observations 230 

highlight the lack of knowledge about the interactions between deep-sea species as indicated by a novel 231 

observation in a relatively short time observing an unexplored area. 232 
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 244 



Figure 1. Time-lapse footage of Ophidiid (Bassozetus sp.) and antipatharian (Schizopathes sp.). The images 245 

show the changes in the antipatharian position relative position of the fish during a 30 hour time-lapse camera 246 

deployment at Mzia-3 site in the western Indian Ocean   247 

 248 

 249 

 250 

Figure 2: Supporting observations. a) Small fish, indicated by an arrow, under a Schizopathes sp. specimen at 251 

the Mzia-2 site (1622 m), b) Ophidiid (Bassozetus sp.) close to a Schizopathes sp. specimen at the Pweza-3 site 252 

1380 m depth (note crustaceans under the antipatharian near the apex of the colony, indicated by an arrow). 253 

 254 

 255 

Figure 3: Examples of potential shelter or concealment by deep-sea fishes in close association with individual 256 

coral colonies a) arctic rockling, Gaidropsarus argentatus, behind Gersemia sp. at 1085 m depth in the Faroe-257 

Shetland Channel, NE Atlantic http://archive.serpentproject.com/2617/ b) ophidiid Barathrites sp. apparently 258 

http://archive.serpentproject.com/2617/


sheltering behind Acanella sp. at 2131 m depth at Hecker Circle off the east coast of the USA, c) Blobfish, 259 

Psychrolutes sp. behind a coral colony (likely Paragorgia sp.) in the western Indian Ocean at the Pweza-3 site 260 

(1380 m) (http://archive.serpentproject.com/2530/).   261 

http://archive.serpentproject.com/2530/


Tables: 262 

Table 1: Location and depth of observations in the western Indian Ocean off Tanzania 263 

Association Date (2013) Site Name Latitude (S) Longitude (E) Depth (m) Temperature (°C) 

Primary 4 Nov* Mzia-3 9° 49’ 39” 40° 27’ 30” 1788 3.2 

Supporting 1 10 Apr  Mzia-2 9° 54' 05'' 40° 29' 43'' 1622 3.6 

Supporting 2 16 Sep Pweza-3 8° 23' 58'' 40° 04' 46'' 1380 4.5 

*First of multiple observations of this specimen 264 

 265 

Table 2: Estimated tail beat frequency of Bassozetus sp. demonstrating different behavioursin video 266 

observations  267 

Site Association Position of fish Behaviour of fish Duration (s) Tail beat frequency (min-1) 

Mzia-3 Primary under coral Holding station 26 25.38 

Mzia-3 Primary under coral Holding station 64 28.13 

Mzia-3 Primary under coral Holding station* 45 40.00 

Mzia-3 Primary outside coral Actively swimming forward 22 57.27 

Pweza-3 Supporting 2 outside coral Holding station 53 36.23 

Pweza-3 Supporting 2 outside coral Holding station 53 34.96 

Pweza-3 Supporting 2 outside coral Actively swimming forward 15 56.00 

*Fish may be experiencing effects of current induced by presence of ROV 268 

 269 

  270 
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