48,808 research outputs found

    Epigenetic modification of the oxytocin receptor gene is associated with emotion processing in the infant brain

    Get PDF
    The neural capacity to discriminate between emotions emerges early in development, though little is known about specific factors that contribute to variability in this vital skill during infancy. In adults, DNA methylation of the oxytocin receptor gene (OXTRm) is an epigenetic modification that is variable, predictive of gene expression, and has been linked to autism spectrum disorder and the neural response to social cues. It is unknown whether OXTRm is variable in infants, and whether it is predictive of early social function. Implementing a developmental neuroimaging epigenetics approach in a large sample of infants (N = 98), we examined whether OXTRm is associated with neural responses to emotional expressions. OXTRm was assessed at 5 months of age. At 7 months of age, infants viewed happy, angry, and fearful faces while functional near-infrared spectroscopy was recorded. We observed that OXTRm shows considerable variability among infants. Critically, infants with higher OXTRm show enhanced responses to anger and fear and attenuated responses to happiness in right inferior frontal cortex, a region implicated in emotion processing through action-perception coupling. Findings support models emphasizing oxytocin's role in modulating neural response to emotion and identify OXTRm as an epigenetic mark contributing to early brain function

    Ion yields and erosion rates for Si1−xGex(0x1) ultralow energy O2+ secondary ion mass spectrometry in the energy range of 0.25–1 keV

    Get PDF
    We report the SIMS parameters required for the quantitative analysis of Si1−xGex across the range of 0 ≀ x ≀ 1 when using low energy O2+ primary ions at normal incidence. These include the silicon and germanium secondary ion yield [i.e., the measured ion signal (ions/s)] and erosion rate [i.e., the speed at which the material sputters (nm/min)] as a function of x. We show that the ratio Rx of erosion rates, Si1−xGex/Si, at a given x is almost independent of beam energy, implying that the properties of the altered layer are dominated by the interaction of oxygen with silicon. Rx shows an exponential dependence on x. Unsurprisingly, the silicon and germanium secondary ion yields are found to depart somewhat from proportionality to (1−x) and x, respectively, although an approximate linear relationship could be used for quantification across around 30% of the range of x (i.e., a reference material containing Ge fraction x would give reasonably accurate quantification across the range of ±0.15x). Direct comparison of the useful (ion) yields [i.e., the ratio of ion yield to the total number of atoms sputtered for a particular species (ions/atom)] and the sputter yields [i.e., the total number of atoms sputtered per incident primary ion (atoms/ions)] reveals a moderate matrix effect where the former decrease monotonically with increasing x except at the lowest beam energy investigated (250 eV). Here, the useful yield of Ge is found to be invariant with x. At 250 eV, the germanium ion and sputter yields are proportional to x for all x

    Performance of a Functionalised Polymer-Coated Silica at Treating Uranium Contaminated Groundwater from a Hungarian Mine Site

    No full text
    The performance of an active material for treating uranium contaminated groundwater within a permeable reactive barrier (PRB) is reported. This material, called PANSIL, has a tailored ligand system that selectively removes the uranyl (UO22+) cation from solution. The active uranyl ligand in PANSIL is a polyacryloamidoxime resin derived from polyacrylonitrile, which is deposited from solution onto the surface of quartz sand to form a thin film coating. PANSIL is effective at sequestering cationic and neutral uranyl species when the solution pH is above 4, due to the stability of the polyacryloamidoxime-uranyl complex formed. However the rate of sequestration decreases rapidly when the pH exceeds about 8 where neutral uranyl species are present only at very low concentrations. It can preferentially sequester UO22+ in the presence of typical divalent groundwater cations. In mildly alkaline conditions the sequestration performance in groundwater is sensitive to the concentration of uranyl complexing ligands, such as bicarbonate. Such behaviour has important consequences for PRB design as it will determine the barrier thickness required to treat a particular groundwater flow rate

    Orbits and origins of the young stars in the central parsec of the galaxy

    Get PDF
    We present new proper motions from the 10 m Keck telescopes for a puzzling population of massive, young stars located within a parsec of the supermassive black hole at the Galactic Center. Our proper motion measurements have uncertainties of only 0.07 mas yr^(−1) (3 km s^(−1) ), which is ≳7 times better than previous proper motion measurements for these stars, and enables us to measure accelerations as low as 0.2 mas yr^(−2) (7 km s^(−1) yr^(−1) ). These measurements, along with stellar line-of-sight velocities from the literature, constrain the true orbit of each individual star and allow us to directly test the hypothesis that the massive stars reside in two stellar disks as has been previously proposed. Analysis of the stellar orbits reveals only one disk of young stars using a method that is capable of detecting disks containing at least 7 stars. The detected disk contains 50% (38 of 73) of the young stars, is inclined by ~115° from the plane of the sky, and is oriented at a position angle of ∌100° East of North. The on-disk and off-disk populations have similar K-band luminosity functions and radial distributions that decrease at larger radii as ∝ r^(−2). The disk has an out-of-the-disk velocity dispersion of 28±6 km s^(−1) , which corresponds to a half-opening angle of 7°±2° , and several candidate disk members have eccentricities greater than 0.2. Our findings suggest that the young stars may have formed in situ but in a more complex geometry than a simple thin circular disk

    Can a wormhole supported by only small amounts of exotic matter really be traversable?

    Full text link
    Recent studies have shown that (a) quantum effects may be sufficient to support a wormhole throat and (b) the total amount of "exotic matter" can be made arbitrarily small. Unfortunately, using only small amounts of exotic matter may result in a wormhole that flares out too slowly to be traversable in a reasonable length of time. Combined with the Ford-Roman constraints, the wormhole may also come close to having an event horizon at the throat. This paper examines a model that overcomes these difficulties, while satisfying the usual traversability conditions. This model also confirms that the total amount of exotic matter can indeed be made arbitrarily small.Comment: 8 pages, AMSTe

    Oedema resulting from artificial elevation of the venous pressure

    Get PDF
    1. A method of measuring the change in limb volume produced by elevation of the venous pressure is described.2. The experimental use of this method indicates that marked individual variation occurs in the swelling resulting from an elevation of the venous pressure to 60 mm.Hg., but that in the same individual, the rate of swelling is virtually constant.3. Evidence is adduced in support of the contention that tissue tension plays a significant part in limiting oedema formation.4. Changes in the rate of swelling in relation to posture are discussed, and the failure of partial anoxaemia to affect the rate of swelling is noted.5. A brief survey of previous observations in the same field is given. Certain criticisms of these observations and the conclusions drawn therefrom are offered

    On the Excess Dispersion in the Polarization Position Angle of Pulsar Radio Emission

    Full text link
    The polarization position angles (PA) of pulsar radio emission occupy a distribution that can be much wider than what is expected from the average linear polarization and the off-pulse instrumental noise. Contrary to our limited understanding of the emission mechanism, the excess dispersion in PA implies that pulsar PAs vary in a random fashion. An eigenvalue analysis of the measured Stokes parameters is developed to determine the origin of the excess PA dispersion. The analysis is applied to sensitive, well-calibrated polarization observations of PSR B1929+10 and PSR B2020+28. The analysis clarifies the origin of polarization fluctuations in the emission and reveals that the excess PA dispersion is caused by the isotropic inflation of the data point cluster formed by the measured Stokes parameters. The inflation of the cluster is not consistent with random fluctuations in PA, as might be expected from random changes in the orientation of the magnetic field lines in the emission region or from stochastic Faraday rotation in either the pulsar magnetosphere or the interstellar medium. The inflation of the cluster, and thus the excess PA dispersion, is attributed to randomly polarized radiation in the received pulsar signal. The analysis also indicates that orthogonal polarization modes (OPM) occur where the radio emission is heavily modulated. In fact, OPM may only occur where the modulation index exceeds a critical value of about 0.3.Comment: Accepted for publication in Ap

    Thin-shell wormholes: Linearization stability

    Full text link
    The class of spherically-symmetric thin-shell wormholes provides a particularly elegant collection of exemplars for the study of traversable Lorentzian wormholes. In the present paper we consider linearized (spherically symmetric) perturbations around some assumed static solution of the Einstein field equations. This permits us to relate stability issues to the (linearized) equation of state of the exotic matter which is located at the wormhole throat.Comment: 4 pages; ReV_TeX 3.0; one postscript figur

    Aerodynamic data banks for Clark-Y, NACA 4-digit and NACA 16-series airfoil families

    Get PDF
    With the renewed interest in propellers as means of obtaining thrust and fuel efficiency in addition to the increased utilization of the computer, a significant amount of progress was made in the development of theoretical models to predict the performance of propeller systems. Inherent in the majority of the theoretical performance models to date is the need for airfoil data banks which provide lift, drag, and moment coefficient values as a function of Mach number, angle-of-attack, maximum thickness to chord ratio, and Reynolds number. Realizing the need for such data, a study was initiated to provide airfoil data banks for three commonly used airfoil families in propeller design and analysis. The families chosen consisted of the Clark-Y, NACA 16 series, and NACA 4 digit series airfoils. The various component of each computer code, the source of the data used to create the airfoil data bank, the limitations of each data bank, program listing, and a sample case with its associated input-output are described. Each airfoil data bank computer code was written to be used on the Amdahl Computer system, which is IBM compatible and uses Fortran
    • 

    corecore