791 research outputs found

    NUV/Blue spectral observations of sprites in the 320-460 nm region: N2{\mathrm N_2} (2PG) Emissions

    Full text link
    A near-ultraviolet (NUV) spectrograph (320-460 nm) was flown on the EXL98 aircraft sprite observation campaign during July 1998. In this wavelength range video rate (60 fields/sec) spectrographic observations found the NUV/blue emissions to be predominantly N2 (2PG). The negligible level of N2+ (1NG) present in the spectrum is confirmed by observations of a co-aligned, narrowly filtered 427.8 nm imager and is in agreement with previous ground-based filtered photometer observations. The synthetic spectral fit to the observations indicates a characteristic energy of ~1.8 eV, in agreement with our other NUV observations.Comment: 7 pages, 2 figures, 1 table, JGR Space Physics "Effects of Thunderstorms and Lightning in the Upper Atmosphere" Special Sectio

    Spatial segregation measures: a methodological review

    Get PDF
    Quantitative indices of segregation are powerful tools for summarising the spatial relationships between population groups and thereby providing the basis for analysis and public policy intervention. While the broad concept of segregation may be intuitive, measurement is challenging because of the complexity of varied dimensions and spatial arrangements. Many traditional measures can be criticised for over-simplification or over-reduction, not least in their treatment of geographical space. Over the last several decades, however, a series of measures has been developed to explicitly incorporate the spatial arrangement of population groups as well as their interactions. This paper reviews the development of spatial segregation measures, particularly focusing on the mathematical formulation of spatial arrangement/relations. In addition, several related issues are discussed, including representation of spatial interaction, spatial scale and statistical inferences. Also, this paper presents an overview of existing software tools that are readily available for calculating some of the reviewed measures. Finally, discussions on challenges and future research are provided

    Retrotransposon activation contributes to neurodegeneration in a Drosophila TDP-43 model of ALS

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two incurable neurodegenerative disorders that exist on a symptomological spectrum and share both genetic underpinnings and pathophysiological hallmarks. Functional abnormality of TAR DNA-binding protein 43 (TDP-43), an aggregation-prone RNA and DNA binding protein, is observed in the vast majority of both familial and sporadic ALS cases and in ~40% of FTLD cases, but the cascade of events leading to cell death are not understood. We have expressed human TDP-43 (hTDP-43) in Drosophila neurons and glia, a model that recapitulates many of the characteristics of TDP-43-linked human disease including protein aggregation pathology, locomotor impairment, and premature death. We report that such expression of hTDP-43 impairs small interfering RNA (siRNA) silencing, which is the major post-transcriptional mechanism of retrotransposable element (RTE) control in somatic tissue. This is accompanied by de-repression of a panel of both LINE and LTR families of RTEs, with somewhat different elements being active in response to hTDP-43 expression in glia versus neurons. hTDP-43 expression in glia causes an early and severe loss of control of a specific RTE, the endogenous retrovirus (ERV) gypsy. We demonstrate that gypsy causes the degenerative phenotypes in these flies because we are able to rescue the toxicity of glial hTDP-43 either by genetically blocking expression of this RTE or by pharmacologically inhibiting RTE reverse transcriptase activity. Moreover, we provide evidence that activation of DNA damage-mediated programmed cell death underlies both neuronal and glial hTDP-43 toxicity, consistent with RTE-mediated effects in both cell types. Our findings suggest a novel mechanism in which RTE activity contributes to neurodegeneration in TDP-43-mediated diseases such as ALS and FTLD

    Fire Ant Alate Wing Motion Data and Numerical Reconstruction

    Get PDF
    The wing motions of a male and a female fire ant alate, which beat their wings at 108 and 96 Hz, respectively, were captured with a stereo imaging system at a high frame rate of 8,000 frames per second. By processing the high-speed image frames, the three-dimensional wingtip positions and the wing surface orientation angles were determined with a high phase resolution, i.e. 74 and 83 phases per period for the male and the female, respectively. A numerical reconstruction of the stereo wingbeat images demonstrated that the data collected described almost all the details of the wing surface motion, so that further computational fluid dynamic simulations are possible for fire ant alate flight

    Simultaneous observation of mesospheric gravity waves and sprites generated by a Midwestern thunderstorm

    Get PDF
    Abstract The present report investigates using simultaneous observations of coincident gravity waves and sprites to establish an upper limit on sprite-associated thermal energy deposition in the mesosphere. The University of Alaska operated a variety of optical imagers and photometers at two ground sites in support of the NASA Sprites99 balloon campaign. One site was atop a US Forest Service lookout tower on Bear Mt. in the Black Hills, in western South Dakota. On the night of 18 August 1999 we obtained from this site simultaneous images of sprites and OH airglow modulated by gravity waves emanating from a very active sprite producing thunderstorm over Nebraska, to the Southeast of Bear Mt. Using 25 s exposures with a bare CCD camera equipped with a red ÿlter, we were able to coincidentally record both short duration (¡10 ms) but bright (¿3 MR) N2 1PG red emissions from sprites and much weaker (∼1 kR), but persistent, OH Meinel nightglow emissions. A time lapse movie created from images revealed short period, complete 360 • concentric wave structures emanating radially outward from a central excitation region directly above the storm. During the initial stages of the storm outwardly expanding waves possessed a period of ≈10 min and wavelength ≈50 km. Over a 1 h interval the waves gradually changed to longer period ≈11 min and shorter wavelength ≈40 km. Over the full 2 h observation time, about two dozen bright sprites generated by the underlying thunderstorm were recorded near the center of the outwardly radiating gravity wave pattern. No distinctive OH brightness signatures uniquely associated with the sprites were detected at the level of 2% of the ambient background brightness, establishing an associated upper limit of approximately T . 0:5 K for a neutral temperature perturbation over the volume of the sprites. The corresponding total thermal energy deposited by the sprite is bounded by these measurements to be less than ∼1 GJ. This value is well above the total energy deposited into the medium by the sprite, estimated by several independent methods to be on the order of ∼1-10 MJ

    Non-crossing dependencies: Least effort, not grammar

    Get PDF
    The use of null hypotheses (in a statistical sense) is common in hard sciences but not in theoretical linguistics. Here the null hypothesis that the low frequency of syntactic dependency crossings is expected by an arbitrary ordering of words is rejected. It is shown that this would require star dependency structures, which are both unrealistic and too restrictive. The hypothesis of the limited resources of the human brain is revisited. Stronger null hypotheses taking into account actual dependency lengths for the likelihood of crossings are presented. Those hypotheses suggests that crossings are likely to reduce when dependencies are shortened. A hypothesis based on pressure to reduce dependency lengths is more parsimonious than a principle of minimization of crossings or a grammatical ban that is totally dissociated from the general and non-linguistic principle of economy.Postprint (author's final draft

    Massively distributed authorship of academic papers

    Get PDF
    Wiki-like or crowdsourcing models of collaboration can provide a number of benefits to academic work. These techniques may engage expertise from different disciplines, and potentially increase productivity. This paper presents a model of massively distributed collaborative authorship of academic papers. This model, developed by a collective of thirty authors, identifies key tools and techniques that would be necessary or useful to the writing process. The process of collaboratively writing this paper was used to discover, negotiate, and document issues in massively authored scholarship. Our work provides the first extensive discussion of the experiential aspects of large-scale collaborative researc

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio
    corecore