91 research outputs found

    PND15 ECONOMICAL EVALUATION OF DIFFERENT FORMS OF BETAHISTINE IN PATIENTS WITH VERTIGO

    Get PDF

    Uniparental Genetic Heritage of Belarusians: Encounter of Rare Middle Eastern Matrilineages with a Central European Mitochondrial DNA Pool

    Get PDF
    Ethnic Belarusians make up more than 80% of the nine and half million people inhabiting the Republic of Belarus. Belarusians together with Ukrainians and Russians represent the East Slavic linguistic group, largest both in numbers and territory, inhabiting East Europe alongside Baltic-, Finno-Permic- and Turkic-speaking people. Till date, only a limited number of low resolution genetic studies have been performed on this population. Therefore, with the phylogeographic analysis of 565 Y-chromosomes and 267 mitochondrial DNAs from six well covered geographic sub-regions of Belarus we strove to complement the existing genetic profile of eastern Europeans. Our results reveal that around 80% of the paternal Belarusian gene pool is composed of R1a, I2a and N1c Y-chromosome haplogroups – a profile which is very similar to the two other eastern European populations – Ukrainians and Russians. The maternal Belarusian gene pool encompasses a full range of West Eurasian haplogroups and agrees well with the genetic structure of central-east European populations. Our data attest that latitudinal gradients characterize the variation of the uniparentally transmitted gene pools of modern Belarusians. In particular, the Y-chromosome reflects movements of people in central-east Europe, starting probably as early as the beginning of the Holocene. Furthermore, the matrilineal legacy of Belarusians retains two rare mitochondrial DNA haplogroups, N1a3 and N3, whose phylogeographies were explored in detail after de novo sequencing of 20 and 13 complete mitogenomes, respectively, from all over Eurasia. Our phylogeographic analyses reveal that two mitochondrial DNA lineages, N3 and N1a3, both of Middle Eastern origin, might mark distinct events of matrilineal gene flow to Europe: during the mid-Holocene period and around the Pleistocene-Holocene transition, respectively

    Large-scale features of Last Interglacial climate: Results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)-Paleoclimate Modeling Intercomparison Project (PMIP4)

    Get PDF
    Abstract. The modeling of paleoclimate, using physically based tools, is increasingly seen as a strong out-of-sample test of the models that are used for the projection of future climate changes. New to the Coupled Model Intercomparison Project (CMIP6) is the Tier 1 Last Interglacial experiment for 127 000 years ago (lig127k), designed to address the climate responses to stronger orbital forcing than the midHolocene experiment, using the same state-of-the-art models as for the future and following a common experimental protocol. Here we present a first analysis of a multi-model ensemble of 17 climate models, all of which have completed the CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima) experiments. The equilibrium climate sensitivity (ECS) of these models varies from 1.8 to 5.6 ∘C. The seasonal character of the insolation anomalies results in strong summer warming over the Northern Hemisphere continents in the lig127k ensemble as compared to the CMIP6 piControl and much-reduced minimum sea ice in the Arctic. The multi-model results indicate enhanced summer monsoonal precipitation in the Northern Hemisphere and reductions in the Southern Hemisphere. These responses are greater in the lig127k than the CMIP6 midHolocene simulations as expected from the larger insolation anomalies at 127 than 6 ka. New synthesis for surface temperature and precipitation, targeted for 127 ka, have been developed for comparison to the multi-model ensemble. The lig127k model ensemble and data reconstructions are in good agreement for summer temperature anomalies over Canada, Scandinavia, and the North Atlantic and for precipitation over the Northern Hemisphere continents. The model–data comparisons and mismatches point to further study of the sensitivity of the simulations to uncertainties in the boundary conditions and of the uncertainties and sparse coverage in current proxy reconstructions. The CMIP6–Paleoclimate Modeling Intercomparison Project (PMIP4) lig127k simulations, in combination with the proxy record, improve our confidence in future projections of monsoons, surface temperature, and Arctic sea ice, thus providing a key target for model evaluation and optimization. </jats:p

    Evaluation of next-generation sequencing software in mapping and assembly

    Get PDF
    Next-generation high-throughput DNA sequencing technologies have advanced progressively in sequence-based genomic research and novel biological applications with the promise of sequencing DNA at unprecedented speed. These new non-Sanger-based technologies feature several advantages when compared with traditional sequencing methods in terms of higher sequencing speed, lower per run cost and higher accuracy. However, reads from next-generation sequencing (NGS) platforms, such as 454/Roche, ABI/SOLiD and Illumina/Solexa, are usually short, thereby restricting the applications of NGS platforms in genome assembly and annotation. We presented an overview of the challenges that these novel technologies meet and particularly illustrated various bioinformatics attempts on mapping and assembly for problem solving. We then compared the performance of several programs in these two fields, and further provided advices on selecting suitable tools for specific biological applications.published_or_final_versio

    Amyloid Formation by the Pro-Inflammatory S100A8/A9 Proteins in the Ageing Prostate

    Get PDF
    BACKGROUND: The conversion of soluble peptides and proteins into polymeric amyloid structures is a hallmark of many age-related degenerative disorders, including Alzheimer's disease, type II diabetes and a variety of systemic amyloidoses. We report here that amyloid formation is linked to another major age-related phenomenon--prostate tissue remodelling in middle-aged and elderly men. METHODOLOGY/PRINCIPAL FINDINGS: By using multidisciplinary analysis of corpora amylacea inclusions in prostate glands of patients diagnosed with prostate cancer we have revealed that their major components are the amyloid forms of S100A8 and S100A9 proteins associated with numerous inflammatory conditions and types of cancer. In prostate protease rich environment the amyloids are stabilized by dystrophic calcification and lateral thickening. We have demonstrated that material closely resembling CA can be produced from S100A8/A9 in vitro under native and acidic conditions and shows the characters of amyloids. This process is facilitated by calcium or zinc, both of which are abundant in ex vivo inclusions. These observations were supported by computational analysis of the S100A8/A9 calcium-dependent aggregation propensity profiles. We found DNA and proteins from Escherichia coli in CA bodies, suggesting that their formation is likely to be associated with bacterial infection. CA inclusions were also accompanied by the activation of macrophages and by an increase in the concentration of S100A8/A9 in the surrounding tissues, indicating inflammatory reactions. CONCLUSIONS/SIGNIFICANCE: These findings, taken together, suggest a link between bacterial infection, inflammation and amyloid deposition of pro-inflammatory proteins S100A8/A9 in the prostate gland, such that a self-perpetuating cycle can be triggered and may increase the risk of malignancy in the ageing prostate. The results provide strong support for the prediction that the generic ability of polypeptide chains to convert into amyloids could lead to their involvement in an increasing number of otherwise apparently unrelated diseases, particularly those associated with ageing.Original Publication:Kiran Yanamandra, Oleg Alexeyev, Vladimir Zamotin, Vaibhav Srivastava, Andrei Shchukarev, Ann-Christin Brorsson, Gian Gaetano Tartaglia, Thomas Vogl, Rakez Kayed, Gunnar Wingsle, Jan Olsson, Christopher M Dobson, Anders Bergh, Fredrik Elgh and Ludmilla A Morozova-Roche, Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate., 2009, PloS one, (4), 5, e5562.http://dx.doi.org/10.1371/journal.pone.000556

    Protocol Dependence of Sequencing-Based Gene Expression Measurements

    Get PDF
    RNA Seq provides unparalleled levels of information about the transcriptome including precise expression levels over a wide dynamic range. It is essential to understand how technical variation impacts the quality and interpretability of results, how potential errors could be introduced by the protocol, how the source of RNA affects transcript detection, and how all of these variations can impact the conclusions drawn. Multiple human RNA samples were used to assess RNA fragmentation, RNA fractionation, cDNA synthesis, and single versus multiple tag counting. Though protocols employing polyA RNA selection generate the highest number of non-ribosomal reads and the most precise measurements for coding transcripts, such protocols were found to detect only a fraction of the non-ribosomal RNA in human cells. PolyA RNA excludes thousands of annotated and even more unannotated transcripts, resulting in an incomplete view of the transcriptome. Ribosomal-depleted RNA provides a more cost-effective method for generating complete transcriptome coverage. Expression measurements using single tag counting provided advantages for assessing gene expression and for detecting short RNAs relative to multi-read protocols. Detection of short RNAs was also hampered by RNA fragmentation. Thus, this work will help researchers choose from among a range of options when analyzing gene expression, each with its own advantages and disadvantages

    Sequencing, de novo annotation and analysis of the first Anguilla anguilla transcriptome: EeelBase opens new perspectives for the study of the critically endangered european eel

    Get PDF
    Background: Once highly abundant, the European eel (Anguilla anguilla L.; Anguillidae; Teleostei) is considered to be critically endangered and on the verge of extinction, as the stock has declined by 90-99% since the 1980s. Yet, the species is poorly characterized at molecular level with little sequence information available in public databases.\ud \ud Results: The first European eel transcriptome was obtained by 454 FLX Titanium sequencing of a normalized cDNA library, produced from a pool of 18 glass eels (juveniles) from the French Atlantic coast and two sites in the Mediterranean coast. Over 310,000 reads were assembled in a total of 19,631 transcribed contigs, with an average length of 531 nucleotides. Overall 36% of the contigs were annotated to known protein/nucleotide sequences and 35 putative miRNA identified.\ud \ud Conclusions: This study represents the first transcriptome analysis for a critically endangered species. EeelBase, a dedicated database of annotated transcriptome sequences of the European eel is freely available at http://compgen.bio.unipd.it/eeelbase. Considering the multiple factors potentially involved in the decline of the European eel, including anthropogenic factors such as pollution and human-introduced diseases, our results will provide a rich source of data to discover and identify new genes, characterize gene expression, as well as for identification of genetic markers scattered across the genome to be used in various applications

    Supernovae from massive stars

    Get PDF
    Massive stars, by which we mean those stars exploding as core collapse supernovae, play a pivotal role in the evolution of the Universe. Therefore, the understanding of their evolution and explosion is fundamental in many branches of physics and astrophysics, among which, galaxy evolution, nucleosynthesis, supernovae, neutron stars and pulsars, black holes, neutrinos and gravitational waves. In this chapter, the author presents an overview of the presupernova evolution of stars in the range between 13 and 120 M\rm M_\odot, with initial metallicities between [Fe/H]=-3 and [Fe/H]=0 and initial rotation velocities v=0, 150, 300 km/s\rm v=0,~150,~300~km/s. Emphasis is placed upon those evolutionary properties that determine the final fate of the star with special attention to the interplay among mass loss, mixing and rotation. A general picture of the evolution and outcome of a generation of massive stars, as a function of the initial mass, metallicity and rotation velocity, is finally outlined.Comment: Author version of a chapter for 'Handbook of Supernovae,' edited by A. Alsabti and P. Murdin, Springer. 59 pages, 27 figure

    Exploring the Switchgrass Transcriptome Using Second-Generation Sequencing Technology

    Get PDF
    Background: Switchgrass (Panicum virgatum L.) is a C4 perennial grass and widely popular as an important bioenergy crop. To accelerate the pace of developing high yielding switchgrass cultivars adapted to diverse environmental niches, the generation of genomic resources for this plant is necessary. The large genome size and polyploid nature of switchgrass makes whole genome sequencing a daunting task even with current technologies. Exploring the transcriptional landscape using next generation sequencing technologies provides a viable alternative to whole genome sequencing in switchgrass. Principal Findings: Switchgrass cDNA libraries from germinating seedlings, emerging tillers, flowers, and dormant seeds were sequenced using Roche 454 GS-FLX Titanium technology, generating 980,000 reads with an average read length of 367 bp. De novo assembly generated 243,600 contigs with an average length of 535 bp. Using the foxtail millet genome as a reference greatly improved the assembly and annotation of switchgrass ESTs. Comparative analysis of the 454-derived switchgrass EST reads with other sequenced monocots including Brachypodium, sorghum, rice and maize indicated a 70– 80 % overlap. RPKM analysis demonstrated unique transcriptional signatures of the four tissues analyzed in this study. More than 24,000 ESTs were identified in the dormant seed library. In silico analysis indicated that there are more than 2000 EST-SSRs in this collection. Expression of several orphan ESTs was confirmed by RT-PCR. Significance: We estimate that about 90 % of the switchgrass gene space has been covered in this analysis. This study nearl
    corecore