41 research outputs found

    Common dace (Leuciscus leuciscus) - A new host of the myxozoan fish parasite, Myxobolus elegans (Cnidaria: Myxozoa) - Short communication

    Get PDF
    This paper reports the detection of the myxozoan species Myxobolus elegans Kashkovsky 1966 in common dace (Leuciscus leuciscus) that has not been previously listed as its host. The problem of differentiation of phenotypically similar Myxobolus species is addressed. During parasitological survey of common dace from the desalinated part of the Gulf of Finland at the city of Sestroretsk, Russia, numerous oval-shaped plasmodia, 0.2-0.4 mm in size, filled with Myxobolus spores were found on the gills. Pear-shaped myxospores were 15.4 (14.8-16.0) x 10.2 (9.6-10.9) mu m in size with a rib on each valve. On the basis of spore morphology, the species appeared to be similar to M. elegans and Myxobolus hungaricus Jaczo, 1940. In order to identify the species, molecular genetic analysis was performed, and the species was identified on the basis of morphological characteristics and 18S rDNA data. The results obtained indicate that the Myxobolus species observed on the gills of dace is M. elegans. Thus, common dace is another valid host of M. elegans besides the type host, ide (Leuciscus idus)

    A multi-wavelength polarimetric study of the blazar CTA 102 during a Gamma-ray flare in 2012

    Full text link
    We perform a multi-wavelength polarimetric study of the quasar CTA 102 during an extraordinarily bright γ\gamma-ray outburst detected by the {\it Fermi} Large Area Telescope in September-October 2012 when the source reached a flux of F>100 MeV=5.2±0.4×106_{>100~\mathrm{MeV}} =5.2\pm0.4\times10^{-6} photons cm2^{-2} s1^{-1}. At the same time the source displayed an unprecedented optical and NIR outburst. We study the evolution of the parsec scale jet with ultra-high angular resolution through a sequence of 80 total and polarized intensity Very Long Baseline Array images at 43 GHz, covering the observing period from June 2007 to June 2014. We find that the γ\gamma-ray outburst is coincident with flares at all the other frequencies and is related to the passage of a new superluminal knot through the radio core. The powerful γ\gamma-ray emission is associated with a change in direction of the jet, which became oriented more closely to our line of sight (θ\theta\sim1.2^{\circ}) during the ejection of the knot and the γ\gamma-ray outburst. During the flare, the optical polarized emission displays intra-day variability and a clear clockwise rotation of EVPAs, which we associate with the path followed by the knot as it moves along helical magnetic field lines, although a random walk of the EVPA caused by a turbulent magnetic field cannot be ruled out. We locate the γ\gamma-ray outburst a short distance downstream of the radio core, parsecs from the black hole. This suggests that synchrotron self-Compton scattering of near-infrared to ultraviolet photons is the probable mechanism for the γ\gamma-ray production.Comment: Accepted for publication in The Astrophysical Journa

    On the Location of the Gamma-ray Emission in the 2008 Outburst in the BL Lacertae Object AO 0235+164 through Observations across the Electromagnetic Spectrum

    Get PDF
    We present observations of a major outburst at centimeter, millimeter, optical, X-ray, and gamma-ray wavelengths of the BL Lacertae object AO 0235+164. We analyze the timing of multi-waveband variations in the flux and linear polarization, as well as changes in Very Long Baseline Array (VLBA) images at 7mm with 0.15 milliarcsecond resolution. The association of the events at different wavebands is confirmed at high statistical significance by probability arguments and Monte-Carlo simulations. A series of sharp peaks in optical linear polarization, as well as a pronounced maximum in the 7 mm polarization of a superluminal jet knot, indicate rapid fluctuations in the degree of ordering of the magnetic field. These results lead us to conclude that the outburst occurred in the jet both in the quasi-stationary "core" and in the superluminal knot, both parsecs downstream of the supermassive black hole. We interpret the outburst as a consequence of the propagation of a disturbance, elongated along the line of sight by light-travel time delays, that passes through a standing recollimation shock in the core and propagates down the jet to create the superluminal knot. The multi-wavelength light curves vary together on long time-scales (months/years), but the correspondence is poorer on shorter time-scales. This, as well as the variability of the polarization and the dual location of the outburst, agrees with the expectations of a multi-zone emission model in which turbulence plays a major role in modulating the synchrotron and inverse Compton fluxes.Comment: Accepted for Publication in the Astrophysical Journal Letters. 7 pages (including 5 figures). Minor corrections with regard to previous version, as proposed by the refere

    The June 2016 Optical and Gamma-Ray Outburst and Optical Micro-Variability of the Blazar 3C454.3

    Get PDF
    The quasar 3C454.3 underwent a uniquely-structured multi-frequency outburst in June 2016. The blazar was observed in the optical RR band by several ground-based telescopes in photometric and polarimetric modes, at γ\gamma-ray frequencies by the \emph{Fermi}\ Large Area Telescope, and at 43 GHz with the Very Long Baseline Array. The maximum flux density was observed on 2016 June 24 at both optical and γ\gamma-ray frequencies, reaching Soptmax=18.91±0.08S^\mathrm{max}_\mathrm{opt}=18.91\pm0.08 mJy and Sγmax=22.20±0.18×106S_\gamma^\mathrm{max} =22.20\pm0.18\times10^{-6} ph cm2^{-2} s1^{-1}, respectively. The June 2016 outburst possessed a precipitous decay at both γ\gamma-ray and optical frequencies, with the source decreasing in flux density by a factor of 4 over a 24-hour period in RR band. Intraday variability was observed throughout the outburst, with flux density changes between 1 and 5 mJy over the course of a night. The precipitous decay featured statistically significant quasi-periodic micro-variability oscillations with an amplitude of 2\sim 2-3%3\% about the mean trend and a characteristic period of 36 minutes. The optical degree of polarization jumped from 3%\sim3\% to nearly 20\% during the outburst, while the position angle varied by \sim120\degr. A knot was ejected from the 43 GHz core on 2016 Feb 25, moving at an apparent speed vapp=20.3c±0.8cv_\mathrm{app}=20.3c\pm0.8c. From the observed minimum timescale of variability τoptmin2\tau_\mathrm{opt}^\mathrm{min}\approx2 hr and derived Doppler factor δ=22.6\delta=22.6, we find a size of the emission region r2.6×1015r\lesssim2.6\times10^{15} cm. If the quasi-periodic micro-variability oscillations are caused by periodic variations of the Doppler factor of emission from a turbulent vortex, we derive a rotational speed of the vortex 0.2c\sim0.2c.Comment: 19 pages, 13 figures, 3 tables, accepted to the Astrophysical Journal 2019 March

    Emission-line Variability during a Nonthermal Outburst in the Gamma-Ray Bright Quasar 1156+295

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.We present multi-epoch optical spectra of the γ-ray bright blazar 1156+295 (4C +29.45, Ton 599) obtained with the 4.3 m Lowell Discovery Telescope. During a multiwavelength outburst in late 2017, when the γ-ray flux increased to 2.5 × 10−6 phot cm−2 s−1 and the quasar was first detected at energies ≥100 GeV, the flux of the Mg ii λ2798 emission line changed, as did that of the Fe emission complex at shorter wavelengths. These emission-line fluxes increased along with the highly polarized optical continuum flux, which is presumably synchrotron radiation from the relativistic jet, with a relative time delay of ≲2 weeks. This implies that the line-emitting clouds lie near the jet, which points almost directly toward the line of sight. The emission-line radiation from such clouds, which are located outside the canonical accretion-disk related broad-line region, may be a primary source of seed photons that are up-scattered to γ-ray energies by relativistic electrons in the jet. © 2022. The Author(s). Published by the American Astronomical Society.This research was supported in part by NASA Fermi guest investigator program grants 80NSSC19K1504 and 80NSSC20K1565. We thank A. Tchekhovskoy for discussion of possible origins of the variable line-emitting clouds. These results made use of the Lowell Discovery Telescope (LDT) at Lowell Observatory. Lowell Observatory is a private, non-profit institution dedicated to astrophysical research and public appreciation of astronomy, and operates the LDT in partnership with Boston University, the University of Maryland, the University of Toledo, Northern Arizona University and Yale University. This study was based in part on observations conducted using the 1.8 m Perkins Telescope Observatory (PTO) in Arizona, which is owned and operated by Boston University. I.A. acknowledges financial support from the Spanish "Ministerio de Ciencia e Innovación" (MCINN) through the "Center of Excellence Severo Ochoa" award for the Instituto de Astrofísica de Andalucía-CSIC (SEV-2017-0709). Acquisition and reduction of the MAPCAT data were supported in part by MICINN through grants AYA2016-80889-P and PID2019-107847RB-C44. The MAPCAT observations were carried out at the German-Spanish Calar Alto Observatory, which is jointly operated by Junta de Andalucía and Consejo Superior de Investigaciones Científicas. Data from the Steward Observatory spectropolarimetric monitoring project were used; this program was supported by Fermi Guest Investigator grants NNX08AW56G, NNX09AU10G, NNX12AO93G, and NNX15AU81G. C.C. acknowledges support from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program under the grant agreement No. 771282.Peer reviewe

    Polarized blazar X-rays imply particle acceleration in shocks

    Get PDF
    Most of the light from blazars, active galactic nuclei with jets of magnetized plasma that point nearly along the line of sight, is produced by high-energy particles, up to around 1 TeV. Although the jets are known to be ultimately powered by a supermassive black hole, how the particles are accelerated to such high energies has been an unanswered question. The process must be related to the magnetic field, which can be probed by observations of the polarization of light from the jets. Measurements of the radio to optical polarization—the only range available until now—probe extended regions of the jet containing particles that left the acceleration site days to years earlier1,2,3, and hence do not directly explore the acceleration mechanism, as could X-ray measurements. Here we report the detection of X-ray polarization from the blazar Markarian 501 (Mrk 501). We measure an X-ray linear polarization degree ΠX of around 10%, which is a factor of around 2 higher than the value at optical wavelengths, with a polarization angle parallel to the radio jet. This points to a shock front as the source of particle acceleration and also implies that the plasma becomes increasingly turbulent with distance from the shock

    X-ray Polarization Observations of BL Lacertae

    Get PDF
    Blazars are a class of jet-dominated active galactic nuclei with a typical double-humped spectral energy distribution. It is of common consensus the Synchrotron emission to be responsible for the low frequency peak, while the origin of the high frequency hump is still debated. The analysis of X-rays and their polarization can provide a valuable tool to understand the physical mechanisms responsible for the origin of high-energy emission of blazars. We report the first observations of BL Lacertae performed with the Imaging X-ray Polarimetry Explorer ({IXPE}), from which an upper limit to the polarization degree ΠX<\Pi_X<12.6\% was found in the 2-8 keV band. We contemporaneously measured the polarization in radio, infrared, and optical wavelengths. Our multiwavelength polarization analysis disfavors a significant contribution of proton synchrotron radiation to the X-ray emission at these epochs. Instead, it supports a leptonic origin for the X-ray emission in BL Lac.Comment: 17 pages, 5 figures, accepted for publication in ApJ

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
    corecore