735 research outputs found

    Electromechanical transducer for drying and processing of coal concentrates and sludges

    Get PDF
    Purpose. Determination of the effect of perforations in the hollow ferromagnetic rotor on dynamic characteristics of the electro-mechanical transducer. Methods. Calculation of the dynamic characteristics of the electromechanical transducer with a hollow smooth and perforated rotor was performed using the theory of the general electrical machine, as well as the numerical solutions of differential equations by finite elements’ method in three-dimensional statement. Findings. The paper presents the research into the impact of rotor holes on the form of dynamic characteristics, which was carried out on the basis of comparing characteristics of the electromechanical transducer with those of smooth and perforated rotor. Introduction of rotor perforations brings about downward transposition of the mechanical dynamic characteristic parallel to itself. Starting the transducer with hollow ferromagnetic rotor, compared to starting the basic asynchronous motor, has a lower amplitude and smaller number of pulsations of electro-magnetic shock torque. We suggest calculating the dynamic characteristics of the electromechanical transducer with a hollow ferromagnetic rotor by way of combining the generalized theory of electrical machines with numerical solution of finite elements’ method in three-dimensional statement. This approach was tested by juxtaposing the calculated and experimental data obtained for the physical model of the transducer with a hollow ferromagnetic rotor. Originality. Dynamic characteristics of the electromechanical transducer with a hollow smooth and perforated rotor were obtained for starting with ventilation load. Practical implications. The study results allow to expand the scientific theoretical basis of asynchronous machines with a ferromagnetic rotor and can be used to optimize the design and improve the efficiency of implementing electromechanical transducers with a hollow perforated rotor.ЦСль. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ влияния ΠΏΠ΅Ρ€Ρ„ΠΎΡ€Π°Ρ†ΠΈΠΉ ΠΏΠΎΠ»ΠΎΠ³ΠΎ Ρ„Π΅Ρ€Ρ€ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ Ρ€ΠΎΡ‚ΠΎΡ€Π° Π½Π° динамичСскиС характСристики элСктромСханичСского прСобразоватСля. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°. РасчСт динамичСских характСристик элСктромСханичСского прСобразоватСля с ΠΏΠΎΠ»Ρ‹ΠΌ Π³Π»Π°Π΄ΠΊΠΈΠΌ ΠΈ ΠΏΠ΅Ρ€Ρ„ΠΎΡ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ выполнялся с использованиСм Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½ΠΎΠΉ элСктричСской ΠΌΠ°ΡˆΠΈΠ½Ρ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ с использованиСм числСнного Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΉ постановкС. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ исслСдованиС влияния отвСрстий Ρ€ΠΎΡ‚ΠΎΡ€Π° Π½Π° Ρ„ΠΎΡ€ΠΌΡƒ динамичСских характСристик, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ Π½Π° Π±Π°Π·Π΅ сравнСния характСристик элСктромСханичСского прСобразоватСля с Π³Π»Π°Π΄ΠΊΠΈΠΌ ΠΈ ΠΏΠ΅Ρ€Ρ„ΠΎΡ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Ρ„ΠΎΡ€Π°Ρ†ΠΈΠΉ Ρ€ΠΎΡ‚ΠΎΡ€Π° ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ динамичСской мСханичСской характСристики Π²Π½ΠΈΠ· ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ самой сСбС. ΠŸΡƒΡΠΊ прСобразоватСля с ΠΏΠΎΠ»Ρ‹ΠΌ Ρ„Π΅Ρ€Ρ€ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ, Π² сравнСнии с пуском Π±Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ асинхронного двигатСля, отличаСтся мСньшСй Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄ΠΎΠΉ ΠΈ количСством ΠΏΡƒΠ»ΡŒΡΠ°Ρ†ΠΈΠΉ ΡƒΠ΄Π°Ρ€Π½ΠΎΠ³ΠΎ элСктромагнитного ΠΌΠΎΠΌΠ΅Π½Ρ‚Π°. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ расчСту динамичСских характСристик элСктромСханичСского прСобразоватСля с ΠΏΠΎΠ»Ρ‹ΠΌ Ρ„Π΅Ρ€Ρ€ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ, Π·Π°ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠΉΡΡ Π² сочСтании ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½ΠΎΠΉ элСктричСской ΠΌΠ°ΡˆΠΈΠ½Ρ‹ с числСнным Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΉ постановкС. Π”Π°Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΎΠΏΡ€ΠΎΠ±ΠΎΠ²Π°Π½ ΠΏΡƒΡ‚Π΅ΠΌ сопоставлСния расчСтных ΠΈ ΠΎΠΏΡ‹Ρ‚Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… для физичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ прСобразоватСля с ΠΏΠΎΠ»Ρ‹ΠΌ Ρ„Π΅Ρ€Ρ€ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ. Научная Π½ΠΎΠ²ΠΈΠ·Π½Π°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ динамичСскиС характСристики элСктромСханичСского прСобразоватСля с ΠΏΠΎΠ»Ρ‹ΠΌ Π³Π»Π°Π΄ΠΊΠΈΠΌ ΠΈ ΠΏΠ΅Ρ€Ρ„ΠΎΡ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΡ€ΠΈ пускС с вСнтиляторной Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΎΠΉ. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Π·Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ Π½Π°ΡƒΡ‡Π½ΠΎ-Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π±Π°Π·Ρƒ асинхронных машин с Ρ„Π΅Ρ€Ρ€ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ конструкции ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ эффСктивности использования элСктромСханичСских ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»Π΅ΠΉ с ΠΏΠΎΠ»Ρ‹ΠΌ ΠΏΠ΅Ρ€Ρ„ΠΎΡ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ.ΠœΠ΅Ρ‚Π°. ВизначСння Π²ΠΏΠ»ΠΈΠ²Ρƒ ΠΏΠ΅Ρ€Ρ„ΠΎΡ€Π°Ρ†Ρ–ΠΉ пороТнистого Ρ„Π΅Ρ€ΠΎΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΎΠ³ΠΎ Ρ€ΠΎΡ‚ΠΎΡ€Π° Π½Π° Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½Ρ– характСристики Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Ρ‡Π°. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°. Π ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΎΠΊ Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… характСристик Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Ρ‡Π° Π· пороТнистим Π³Π»Π°Π΄ΠΊΠΈΠΌ Ρ– ΠΏΠ΅Ρ€Ρ„ΠΎΡ€ΠΎΠ²Π°Π½ΠΈΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ виконувався Π· використанням Ρ‚Π΅ΠΎΡ€Ρ–Ρ— ΡƒΠ·Π°Π³Π°Π»ΡŒΠ½Π΅Π½ΠΎΡ— Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΡ— машини, Π° Ρ‚Π°ΠΊΠΎΠΆ Π· використанням Ρ‡ΠΈΡΠ΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Ρ–ΡˆΠ΅Π½Π½Ρ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–Π°Π»ΡŒΠ½ΠΈΡ… Ρ€Ρ–Π²Π½ΡΠ½ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΡ–Π½Ρ†Π΅Π²ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Ρƒ Ρ‚Ρ€ΠΈΠ²ΠΈΠΌΡ–Ρ€Π½Ρ–ΠΉ постановці. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ дослідТСння Π²ΠΏΠ»ΠΈΠ²Ρƒ ΠΎΡ‚Π²ΠΎΡ€Ρ–Π² Ρ€ΠΎΡ‚ΠΎΡ€Π° Π½Π° Ρ„ΠΎΡ€ΠΌΡƒ Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… характСристик, Ρ‰ΠΎ проводилося Π½Π° Π±Π°Π·Ρ– порівняння характСристик Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Ρ‡Π° Π· Π³Π»Π°Π΄ΠΊΠΈΠΌ Ρ– ΠΏΠ΅Ρ€Ρ„ΠΎΡ€ΠΎΠ²Π°Π½ΠΈΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ. ВвСдСння ΠΏΠ΅Ρ€Ρ„ΠΎΡ€Π°Ρ†Ρ–ΠΉ Ρ€ΠΎΡ‚ΠΎΡ€Π° ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ пСрСміщСння Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΎΡ— ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΎΡ— характСристики Π²Π½ΠΈΠ· ΠΏΠ°Ρ€Π°Π»Π΅Π»ΡŒΠ½ΠΎ самій собі. ΠŸΡƒΡΠΊ ΠΏΠ΅Ρ€Π΅Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Ρ‡Π° Π· пороТнистим Ρ„Π΅Ρ€ΠΎΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΈΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ, Ρƒ порівнянні Π· пуском Π±Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ асинхронного Π΄Π²ΠΈΠ³ΡƒΠ½Π°, Π²Ρ–Π΄Ρ€Ρ–Π·Π½ΡΡ”Ρ‚ΡŒΡΡ мСншою Π°ΠΌΠΏΠ»Ρ–Ρ‚ΡƒΠ΄ΠΎΡŽ Ρ‚Π° ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŽ ΠΏΡƒΠ»ΡŒΡΠ°Ρ†Ρ–ΠΉ ΡƒΠ΄Π°Ρ€Π½ΠΎΠ³ΠΎ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ ΠΏΡ–Π΄Ρ…Ρ–Π΄ Π΄ΠΎ Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… характСристик Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Ρ‡Π° Π· пороТнистим Ρ„Π΅Ρ€ΠΎΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΈΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ, Ρ‰ΠΎ полягає Π² ΠΏΠΎΡ”Π΄Π½Π°Π½Π½Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Ρ‚Π΅ΠΎΡ€Ρ–Ρ— ΡƒΠ·Π°Π³Π°Π»ΡŒΠ½Π΅Π½ΠΎΡ— Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΡ— машини Π· Ρ‡ΠΈΡΠ΅Π»ΡŒΠ½ΠΈΠΌ Ρ€Ρ–ΡˆΠ΅Π½Π½ΡΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΡ–Π½Ρ†Π΅Π²ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Ρƒ Ρ‚Ρ€ΠΈΠ²ΠΈΠΌΡ–Ρ€Π½Ρ–ΠΉ постановці. Π”Π°Π½ΠΈΠΉ ΠΏΡ–Π΄Ρ…Ρ–Π΄ Π²ΠΈΠΏΡ€ΠΎΠ±ΡƒΠ²Π°Π½ΠΈΠΉ ΡˆΠ»ΡΡ…ΠΎΠΌ порівняння Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΠΎΠ²ΠΈΡ… Ρ– дослідних Π΄Π°Π½ΠΈΡ…, ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… для Ρ„Ρ–Π·ΠΈΡ‡Π½ΠΎΡ— ΠΌΠΎΠ΄Π΅Π»Ρ– ΠΏΠ΅Ρ€Π΅Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Ρ‡Π° Π· пороТнистим Ρ„Π΅Ρ€ΠΎΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΈΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ. Наукова Π½ΠΎΠ²ΠΈΠ·Π½Π°. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½Ρ– характСристики Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Ρ‡Π° Π· пороТнистим Π³Π»Π°Π΄ΠΊΠΈΠΌ Ρ– ΠΏΠ΅Ρ€Ρ„ΠΎΡ€ΠΎΠ²Π°Π½ΠΈΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΡ€ΠΈ пуску Π· вСнтиляторним навантаТСнням. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Π° Π·Π½Π°Ρ‡ΠΈΠΌΡ–ΡΡ‚ΡŒ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ дослідТСння Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ΡŒ Ρ€ΠΎΠ·ΡˆΠΈΡ€ΠΈΡ‚ΠΈ Π½Π°ΡƒΠΊΠΎΠ²ΠΎ-Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½Ρƒ Π±Π°Π·Ρƒ асинхронних машин Π· Ρ„Π΅Ρ€ΠΎΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΈΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ– ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані для ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ— конструкції ΠΉ підвищСння СфСктивності використання Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΈΡ… ΠΏΠ΅Ρ€Π΅Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Ρ‡Ρ–Π² Π· пороТнистим ΠΏΠ΅Ρ€Ρ„ΠΎΡ€ΠΎΠ²Π°Π½ΠΈΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ.ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠ³ΠΎ исслСдования Π±Ρ‹Π»ΠΎ Π±Ρ‹ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ Π±Π΅Π· ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ, осущСствлСнной Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Π³ΠΎΡΠ±ΡŽΠ΄ΠΆΠ΅Ρ‚Π½ΠΎΠΉ Π½Π°ΡƒΡ‡Π½ΠΎ-ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΎΠΉ Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ β„– 208 β€œΠ Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° подсистСмы ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π° ΠΈ управлСния Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΎΠΉ мСтановости Π³ΠΎΡ€Π½Ρ‹Ρ… выработок”, выполняСмой Π² Донбасском государствСнном тСхничСском унивСрситСтС. Авторы Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‚ ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ профСссору Н.И. АнтощСнко Π·Π° ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΡƒ Π² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ исслСдований

    Search for the Cryptoexotic Member of the Baryon Antidecuplet 1/2+ in the Reactions pi- p --> pi- p and pi- p --> K L

    Full text link
    The main goal of this proposal is the search for a narrow cryptoexotic nucleon resonance by scanning of the pi- p system invariant mass in the region (1610-1770) MeV with the detection of pi- p and K Lambda decays. The scan is supposed to be done by the variation of the incident pi- momentum and its measurement with the accuracy of up to +-0.1% (better than 1 MeV in terms of the invariant mass in the whole energy range) with a set of proportional chambers located in the first focus of the magnetooptical channel. High sensitivity of the method to the resonance under search is shown. The secondary particles scattered from a liquid hydrogen target are detected by sets of the wire drift chambers equipped with modern electronics. The time scale of the project is about 3 years. The budget estimate including manpower, the apparatus and operation cost, is about 40 million rubles. The beam time required is (4-6) two week runs on "high" (10 GeV/c) flattop of the ITEP proton synchrotron.Comment: 16 pages, 10 figures. v2: an acknowledge adde

    Centrality and transverse momentum dependence of elliptic flow of multi-strange hadrons and Ο•\phi meson in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    We present high precision measurements of elliptic flow near midrapidity (∣y∣<1.0|y|<1.0) for multi-strange hadrons and Ο•\phi meson as a function of centrality and transverse momentum in Au+Au collisions at center of mass energy sNN=\sqrt{s_{NN}}= 200 GeV. We observe that the transverse momentum dependence of Ο•\phi and Ξ©\Omega v2v_{2} is similar to that of Ο€\pi and pp, respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0-30%\% and 30-80%\% collision centrality. There is an indication of the breakdown of previously observed mass ordering between Ο•\phi and proton v2v_{2} at low transverse momentum in the 0-30%\% centrality range, possibly indicating late hadronic interactions affecting the proton v2v_{2}.Comment: 7 pages and 4 figures, Accepted for publication in Physical Review Letter

    Elliptic flow of electrons from heavy-flavor hadron decays in Au+Au collisions at sNN=\sqrt{s_{\rm NN}} = 200, 62.4, and 39 GeV

    Full text link
    We present measurements of elliptic flow (v2v_2) of electrons from the decays of heavy-flavor hadrons (eHFe_{HF}) by the STAR experiment. For Au+Au collisions at sNN=\sqrt{s_{\rm NN}} = 200 GeV we report v2v_2, for transverse momentum (pTp_T) between 0.2 and 7 GeV/c using three methods: the event plane method (v2v_{2}{EP}), two-particle correlations (v2v_2{2}), and four-particle correlations (v2v_2{4}). For Au+Au collisions at sNN\sqrt{s_{\rm NN}} = 62.4 and 39 GeV we report v2v_2{2} for pT<2p_T< 2 GeV/c. v2v_2{2} and v2v_2{4} are non-zero at low and intermediate pTp_T at 200 GeV, and v2v_2{2} is consistent with zero at low pTp_T at other energies. The v2v_2{2} at the two lower beam energies is systematically lower than at sNN=\sqrt{s_{\rm NN}} = 200 GeV for pT<1p_T < 1 GeV/c. This difference may suggest that charm quarks interact less strongly with the surrounding nuclear matter at those two lower energies compared to sNN=200\sqrt{s_{\rm NN}} = 200 GeV.Comment: Version accepted by PR

    JUNO Conceptual Design Report

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Within six years of running, the detection of reactor antineutrinos can resolve the neutrino mass hierarchy at a confidence level of 3-4Οƒ\sigma, and determine neutrino oscillation parameters sin⁑2ΞΈ12\sin^2\theta_{12}, Ξ”m212\Delta m^2_{21}, and βˆ£Ξ”mee2∣|\Delta m^2_{ee}| to an accuracy of better than 1%. The JUNO detector can be also used to study terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard Model. The central detector contains 20,000 tons liquid scintillator with an acrylic sphere of 35 m in diameter. ∼\sim17,000 508-mm diameter PMTs with high quantum efficiency provide ∼\sim75% optical coverage. The current choice of the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of detected photoelectrons per MeV is larger than 1,100 and the energy resolution is expected to be 3% at 1 MeV. The calibration system is designed to deploy multiple sources to cover the entire energy range of reactor antineutrinos, and to achieve a full-volume position coverage inside the detector. The veto system is used for muon detection, muon induced background study and reduction. It consists of a Water Cherenkov detector and a Top Tracker system. The readout system, the detector control system and the offline system insure efficient and stable data acquisition and processing.Comment: 328 pages, 211 figure
    • …
    corecore