27 research outputs found
Hedgehog pathway dysregulation contributes to the pathogenesis of human gastrointestinal stromal tumors via GLI-mediated activation of KIT expression.
Gastrointestinal stromal tumors (GIST) arise within the interstitial cell of Cajal (ICC) lineage due to activating KIT/PDGFRA mutations. Both ICC and GIST possess primary cilia (PC), which coordinate PDGFRA and Hedgehog signaling, regulators of gastrointestinal mesenchymal development. Therefore, we hypothesized that Hedgehog signaling may be altered in human GIST and controls KIT expression. Quantitative RT-PCR, microarrays, and next generation sequencing were used to describe Hedgehog/PC-related genes in purified human ICC and GIST. Genetic and pharmacologic approaches were employed to investigate the effects of GLI manipulation on KIT expression and GIST cell viability. We report that Hedgehog pathway and PC components are expressed in ICC and GIST and subject to dysregulation during GIST oncogenesis, irrespective of KIT/PDGFRA mutation status. Using genomic profiling, 10.2% of 186 GIST studied had potentially deleterious genomic alterations in 5 Hedgehog-related genes analyzed, including in the PTCH1 tumor suppressor (1.6%). Expression of the predominantly repressive GLI isoform, GLI3, was inversely correlated with KIT mRNA levels in GIST cells and non-KIT/non-PDGFRA mutant GIST. Overexpression of the 83-kDa repressive form of GLI3 or small interfering RNA-mediated knockdown of the activating isoforms GLI1/2 reduced KIT mRNA. Treatment with GLI1/2 inhibitors, including arsenic trioxide, significantly increased GLI3 binding to the KIT promoter, decreased KIT expression, and reduced viability in imatinib-sensitive and imatinib-resistant GIST cells. These data offer new evidence that genes necessary for Hedgehog signaling and PC function in ICC are dysregulated in GIST. Hedgehog signaling activates KIT expression irrespective of mutation status, offering a novel approach to treat imatinib-resistant GIST
Genomic Profiling of Advanced-Stage, Metaplastic Breast Carcinoma by Next-Generation Sequencing Reveals Frequent, Targetable Genomic Abnormalities and Potential New Treatment Options
Context.— Metastatic metaplastic breast carcinoma (MPBC) is an uncommon, but aggressive, tumor resistant to conventional chemotherapy.
Objective.— To learn whether next-generation sequencing could identify potential targets of therapy for patients with relapsed and metastatic MPBC.
Design.— Hybridization capture of 3769 exons from 236 cancer-related genes and 47 introns of 19 genes commonly rearranged in cancer was applied to a minimum of 50 ng of DNA extracted from 20 MPBC formalin-fixed, paraffin-embedded specimens and sequenced to high uniform coverage.
Results.— The 20 patients with MPBC had a median age of 62 years (range, 42–86 years). There were 9 squamous (45%), 9 chondroid (45%), and 2 spindle cell (10%) MPBCs, all of which were high grade. Ninety-three genomic alterations were identified, (range, 1–11) with 19 of the 20 cases (95%) harboring an alteration that could potentially lead to a targeted treatment option. The most-common alterations were in TP53 (n = 69; 75%), PIK3CA (n = 37; 40%), MYC (n = 28; 30%), MLL2 (n = 28; 30%), PTEN (n = 23; 25%), CDKN2A/B (n = 19; 20%), CCND3 (n = 14; 15%), CCNE1 (n = 9; 10%), EGFR (n = 9; 10%), and KDM6A (n = 9; 10%); AKT3, CCND1, CCND2, CDK4, FBXW7, FGFR1, HRAS, NF1, PIK3R1, and SRC were each altered in a single case. All 16 MPBCs (100%) that were negative for ERBB2 (HER2) overexpression by immunohistochemistry and/or ERBB2 (HER2) amplification by fluorescence in situ hybridization were also uniformly (100%) negative for ERBB2 amplification by next-generation sequencing–based copy-number assessment.
Conclusions.— Our results indicate that genomic profiling using next-generation sequencing can identify clinically meaningful alterations that have the potential to guide targeted treatment decisions in most patients with metastatic MPBC
Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 5
In this contribution, new data concerning bryophytes, fungi, and lichens of the Italian flora are presented. It includes new records and confirmations for the bryophyte genera Diplophyllum and Ptychostomum, the fungal genera Arrhenia, Gymnosporangium, and Sporidesmium and the lichen genera Arthonia, Coenogonium, Flavoplaca, Gyalolechia, Parmotrema, Peltigera, Pterygiopsis, Squamarina, Tornabea, and Waynea
FGFR1 and NTRK3 actionable alterations in “Wild-Type” gastrointestinal stromal tumors
BACKGROUND: About 10–15% of adult, and most pediatric, gastrointestinal stromal tumors (GIST) lack mutations in KIT, PDGFRA, SDHx, or RAS pathway components (KRAS, BRAF, NF1). The identification of additional mutated genes in this rare subset of tumors can have important clinical benefit to identify altered biological pathways and select targeted therapies. METHODS: We performed comprehensive genomic profiling (CGP) for coding regions in more than 300 cancer-related genes of 186 GISTs to assess for their somatic alterations. RESULTS: We identified 24 GIST lacking alterations in the canonical KIT/PDGFRA/RAS pathways, including 12 without SDHx alterations. These 24 patients were mostly adults (96%). The tumors had a 46% rate of nodal metastases. These 24 GIST were more commonly mutated at 7 genes: ARID1B, ATR, FGFR1, LTK, SUFU, PARK2 and ZNF217. Two tumors harbored FGFR1 gene fusions (FGFR1–HOOK3, FGFR1–TACC1) and one harbored an ETV6–NTRK3 fusion that responded to TRK inhibition. In an independent sample set, we identified 5 GIST cases lacking alterations in the KIT/PDGFRA/SDHx/RAS pathways, including two additional cases with FGFR1–TACC1 and ETV6–NTRK3 fusions. CONCLUSIONS: Using patient demographics, tumor characteristics, and CGP, we show that GIST lacking alterations in canonical genes occur in younger patients, frequently metastasize to lymph nodes, and most contain deleterious genomic alterations, including gene fusions involving FGFR1 and NTRK3. If confirmed in larger series, routine testing for these translocations may be indicated for this subset of GIST. Moreover, these findings can be used to guide personalized treatments for patients with GIST. Trial registration NCT 02576431. Registered October 12, 2015 ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-016-1075-6) contains supplementary material, which is available to authorized users