496 research outputs found

    Time-frequency analysis of ship wave patterns in shallow water: modelling and experiments

    Full text link
    A spectrogram of a ship wake is a heat map that visualises the time-dependent frequency spectrum of surface height measurements taken at a single point as the ship travels by. Spectrograms are easy to compute and, if properly interpreted, have the potential to provide crucial information about various properties of the ship in question. Here we use geometrical arguments and analysis of an idealised mathematical model to identify features of spectrograms, concentrating on the effects of a finite-depth channel. Our results depend heavily on whether the flow regime is subcritical or supercritical. To support our theoretical predictions, we compare with data taken from experiments we conducted in a model test basin using a variety of realistic ship hulls. Finally, we note that vessels with a high aspect ratio appear to produce spectrogram data that contains periodic patterns. We can reproduce this behaviour in our mathematical model by using a so-called two-point wavemaker. These results highlight the role of wave interference effects in spectrograms of ship wakes.Comment: 14 pages, 7 figure

    MISR stereoscopic image matchers: techniques and results

    Get PDF
    The Multi-angle Imaging SpectroRadiometer (MISR) instrument, launched in December 1999 on the NASA EOS Terra satellite, produces images in the red band at 275-m resolution, over a swath width of 360 km, for the nine camera angles 70.5/spl deg/, 60/spl deg/, 45.6/spl deg/, and 26.1/spl deg/ forward, nadir, and 26.1/spl deg/, 45.6/spl deg/, 60/spl deg/, and 70.5/spl deg/ aft. A set of accurate and fast algorithms was developed for automated stereo matching of cloud features to obtain cloud-top height and motion over the nominal six-year lifetime of the mission. Accuracy and speed requirements necessitated the use of a combination of area-based and feature-based stereo-matchers with only pixel-level acuity. Feature-based techniques are used for cloud motion retrieval with the off-nadir MISR camera views, and the motion is then used to provide a correction to the disparities used to measure cloud-top heights which are derived from the innermost three cameras. Intercomparison with a previously developed "superstereo" matcher shows that the results are very comparable in accuracy with much greater coverage and at ten times the speed. Intercomparison of feature-based and area-based techniques shows that the feature-based techniques are comparable in accuracy at a factor of eight times the speed. An assessment of the accuracy of the area-based matcher for cloud-free scenes demonstrates the accuracy and completeness of the stereo-matcher. This trade-off has resulted in the loss of a reliable quality metric to predict accuracy and a slightly high blunder rate. Examples are shown of the application of the MISR stereo-matchers on several difficult scenes which demonstrate the efficacy of the matching approach

    Multiangle observations of Arctic clouds from FIRE ACE: June 3, 1998, case study

    Get PDF
    In May and June 1998 the Airborne Multiangle Imaging Spectroradiometer (AirMISR) participated in the FIRE Arctic Cloud Experiment (ACE). AirMISR is an airborne instrument for obtaining multiangle imagery similar to that of the satellite-borne MISR instrument. This paper presents a detailed analysis of the data collected on June 3, 1998. In particular, AirMISR radiance measurements are compared with measurements made by two other instruments, the Cloud Absorption Radiometer (CAR) and the MODIS airborne simulator (MAS), as well as to plane-parallel radiative transfer simulations. It is found that the AirMISR radiance measurements and albedo estimates compare favorably both with the other instruments and with the radiative transfer simulations. In addition to radiance and albedo, the multiangle AirMISR data can be used to obtain estimates of cloud top height using stereoimaging techniques. Comparison of AirMISR retrieved cloud top height (using the complete MISR-based stereoimaging approach) shows excellent agreement with the measurements from the airborne Cloud Lidar System (CLS) and ground-based millimeterwave cloud radar

    Sixty-five foot diameter DGB parachute planetary entry parachute program Design report

    Get PDF
    Structural design and component test data for disk gap-band planetary entry parachut

    Mathematical models and time-frequency heat maps for surface gravity waves generated by thin ships

    Full text link
    Recent research suggests that studying the time-frequency response of ship wave signals has potential to shed light on a range of applications, such as inferring the dynamical and geometric properties of a moving vessel based on the surface elevation data detected at a single point in space. We continue this line of research here with a study of mathematical models for thin ships using standard Wigley hulls and Wigley transom-stern hulls as examples. Mathematical models of varying sophistication are considered. These include basic minimal models which use applied pressure distributions as proxies for the ship hull. The more complicated models are Michell's thin ship theory and the Hogner model, both of which explicitly take into account the shape of the hull. We outline a methodology for carefully choosing the form and parameter values in the minimal models such that they reproduce the key features of the more complicated models in the time-frequency domain. For example, we find that a two-pressure model is capable of producing wave elevation signals that have a similar time-frequency profile as that for Michell's thin ship theory applied to the Wigley hull, including the crucially important features caused by interference between waves created at the bow and stern of the ship. One of the key tools in our analysis is the spectrogram, which is a heat-map visualisation in the time-frequency domain. Our work here extends the existing knowledge on the topic of spectrograms of ship waves. The theoretical results in this study are supported by experimental data collected in a towing tank at the Australian Maritime College using model versions of the standard Wigley hulls and Wigley transom-stern hulls

    High speed video capture for mobile phone cameras

    Get PDF
    We consider an electromechanical model for the operation of a voice coil motor in a mobile phone camera, with the aim of optimizing how a lens can be moved to a desired focusing motion. Although a methodology is developed for optimizing lens shift, there is some concern about the experimentally-determined model parameters that are at our disposal. Central to the model is the value of the estimated magnetic force constant, Kf: its value determines how far it is actually possible to move lens, but it appears that, from the value given, it would not be possible to shift the lens through the displacements desired. Furthermore, earlier experiments have also estimated the value of the back EMF constant, Kg , to be roughly five times greater than Kf, even though we present two theoretical arguments that show that Kf = Kg: a conclusion supported by readily-available manufacturers’ data

    Moving boundary problems for quasi-steady conduction limited melting

    Get PDF
    The problem of melting a crystal dendrite is modelled as a quasi-steady Stefan 5 problem. By employing the Baiocchi transform, asymptotic results are derived in the limit that 6 the crystal melts completely, extending previous results that hold for a special class of initial and 7 boundary conditions. These new results, together with predictions for whether the crystal pinches off 8 and breaks into two, are supported by numerical calculations using the level set method. The effects of 9 surface tension are subsequently considered, leading to a canonical problem for near-complete-melting 10 which is studied in linear stability terms and then solved numerically. Our study is motivated in 11 part by experiments undertaken as part of the Isothermal Dendritic Growth Experiment, in which 12 dendritic crystals of pivalic acid were melted in a microgravity environment: these crystals were 13 found to be prolate spheroidal in shape, with an aspect ratio initially increasing with time then 14 rather abruptly decreasing to unity. By including a kinetic undercooling-type boundary condition in 15 addition to surface tension, our model suggests the aspect ratio of a melting crystal can reproduce 16 the same non-monotonic behaviour as that which was observed experimentally. 1

    Second-Order Coherence Across the Brillouin Lasing Threshold

    Full text link
    Brillouin-Mandelstam scattering is one of the most accessible nonlinear optical phenomena and has been widely studied since its theoretical discovery one hundred years ago. The scattering mechanism is a three-wave mixing process between two optical fields and one acoustic field and has found a broad range of applications spanning microscopy to ultra-narrow-linewidth lasers. Building on the success of utilizing this nonlinearity at a classical level, a rich avenue is now being opened to explore Brillouin scattering within the paradigm of quantum optics. Here, we take a key step in this direction by employing quantum optical techniques yet to be utilized for Brillouin scattering to characterize the second-order coherence of Stokes scattering across the Brillouin lasing threshold. We use a silica microsphere resonator and single-photon counters to observe the expected transition from bunched statistics of thermal light below the lasing threshold to Poissonian statistics of coherent light above the threshold. Notably, at powers approaching the lasing threshold, we also observe super-thermal statistics, which arise due to instability and a ``flickering'' in and out of lasing as the pump field is transiently depleted. The statistics observed across the transition, including the ``flickering'', are a result of the full nonlinear three-wave mixing process and cannot be captured by a linearized model. These measurements are in good agreement with numerical solutions of the three-wave Langevin equations and are well demarcated by analytical expressions for the instability and the lasing thresholds. These results demonstrate that applying second-order-coherence and photon-counting measurements to Brillouin scattering provides new methods to advance our understanding of Brillouin scattering itself and progress toward quantum-state preparation and characterization of acoustic modes.Comment: Main (8 pages, 2 figures) + Supplementary (6 pages, 1 figures), Submitte

    Planning for Sustainability in Small Municipalities: The Influence of Interest Groups, Growth Patterns, and Institutional Characteristics

    Get PDF
    How and why small municipalities promote sustainability through planning efforts is poorly understood. We analyzed ordinances in 451 Maine municipalities and tested theories of policy adoption using regression analysis.We found that smaller communities do adopt programs that contribute to sustainability relevant to their scale and context. In line with the political market theory, we found that municipalities with strong environmental interests, higher growth, and more formal governments were more likely to adopt these policies. Consideration of context and capacity in planning for sustainability will help planners better identify and benefit from collaboration, training, and outreach opportunities
    corecore