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Abstract. The problem of melting a crystal dendrite is modelled as a quasi-steady Stefan5
problem. By employing the Baiocchi transform, asymptotic results are derived in the limit that6
the crystal melts completely, extending previous results that hold for a special class of initial and7
boundary conditions. These new results, together with predictions for whether the crystal pinches off8
and breaks into two, are supported by numerical calculations using the level set method. The effects of9
surface tension are subsequently considered, leading to a canonical problem for near-complete-melting10
which is studied in linear stability terms and then solved numerically. Our study is motivated in11
part by experiments undertaken as part of the Isothermal Dendritic Growth Experiment, in which12
dendritic crystals of pivalic acid were melted in a microgravity environment: these crystals were13
found to be prolate spheroidal in shape, with an aspect ratio initially increasing with time then14
rather abruptly decreasing to unity. By including a kinetic undercooling-type boundary condition in15
addition to surface tension, our model suggests the aspect ratio of a melting crystal can reproduce16
the same non-monotonic behaviour as that which was observed experimentally.17
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1. Introduction. While there is a variety of simple models to approximate the21

shape of a melting particle [33, 38], the traditional approach from a mathematical22

perspective is to employ a Stefan problem, which involves the linear heat equation23

subject to appropriate boundary conditions on the solid-melt interface. These moving24

boundary problems are well studied via rigorous analysis, asymptotic techniques, some25

exact solutions and numerical computation. Almost all of the analytical progress has26

been made for one-dimensional problems or those with radial symmetry [23, 39, 47,27

48, 55], although there have been successful studies in which the symmetry is broken28

[37, 44, 46, 56]. We continue this direction in the present study, focusing on the29

melting of an axially symmetric dendritic crystal. We employ both analytical and30

numerical techniques to study the shape of the evolving crystal, focussing on the very31

final stages of melting.32

A key aspect of a traditional Stefan problem is that the effects of convection33

are ignored. An excellent example of a relevant physical application involves certain34

experiments undertaken on the space shuttle Columbia, as part of the so-called Iso-35

thermal Dendritic Growth Experiment (IDGE) [21, 22, 43], in which convection is36

not an issue. The conduction-limited melting that was studied in those experiments37

provides a physical motivation for the kind of theoretical Stefan problems considered38

here. A brief summary of these experiments is as follows. A pure liquid melt, pivalic39

acid, is held at a temperature u∗ > u∗m, where u∗m ≈ 35.9 ◦C is the equilibrium melting40

temperature. The temperature is then reduced to slightly supercool the melt so that41

u . um throughout. The growth of dendrites is initiated by activating a thermoelec-42

tric cooler to chill a small isolated volume of the melt, leading to a dendritic mushy43
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2 L. C. MORROW ET AL.

Fig. 1: Left: A sequence of video frames of melting ellipsoidal PVA crystal collected
as part of the Isothermic Dendritic Growth experiment. Right: Digital analysis of the
middle frame on the left. The major, C, and minor, A, axis where computed using
automated edge detection software to approximate the aspect ratio as a function of
time. The black tip of the glass injector at the top of each frame has a diameter of
1 mm. Reproduced from Glicksman et al. [22] with permission from Springer Nature.

zone. Finally, the temperature is raised to remelt the crystals, returning the system44

to a stable melt phase.45

We are particularly interested in the final component of the IDGE. After sufficient46

melting of the mushy zone had occurred, the remaining fragments consisted of isolated47

crystallites that resulted from partially melting dendritic side branches. Typically48

these were roughly prolate spherical in shape (see Figure 1). For the final minute49

of melting of a particular crystal, video data (filmed at 30 frames per second) was50

analysed to determine the aspect ratio at each time. For the examples presented51

by Glicksman and co-workers [22, 43], the aspect ratio of the needle-shaped crystals52

increased with time from about 7 at te − t = 60 s to 17 at te − t = 10 s, where53

te is the final melting time (also referred to as the extinction time). After about54

te − t = 10 s, the aspect ratio rapidly decreased, and appeared to approach unity as55

t→ t−e , meaning that the crystals were spherical just before extinction.56

In order to make analytical progress, Glicksman et al. [21] model the process57

with a one-phase quasi-steady problem, which results by ignoring heat conduction58

within the crystals and assuming an infinite Stefan number. Here, the Stefan number59

is defined by60

(1.1) β =
L

c(u∗∞ − u∗m)
,61

where c is the specific heat, L the latent heat of fusion per mass and u∗∞ − u∗m is62

the temperature difference between the melt away from the crystal and the melting63

temperature. In reality, for this particular experiment the parameter values were64

L/c ≈ 10.99 K, u∗∞−u∗m ≈ 1.8 K, so β ≈ 6.1, which is not reasonably large. Glicksman65

et al. [21] derive an exact solution to the infinite-Stefan-number problem in an infinite66

domain in prolate spheroidal coordinates, which applies under the further assumption67

that the aspect ratio of the dendrite remains constant. This solution is a special68

case of that presented earlier by Ham [25] and Howison [28] (which holds for the69

more general shape of an ellipsoid with constant aspect ratios), for example, and that70

derived using the Baiocchi transform by McCue et al. [45] (again, for an ellipsoid).71

The solution was used by Glicksman et al. [21] to approximate the time-dependence72

of the melting process, with quite good agreement with experimental results.73
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QUASI-STEADY CONDUCTION LIMITED MELTING 3

Glicksman and co-workers [21, 22, 43] did not provide an explanation for the ob-74

served increase in aspect ratio during the first 50 s of melting; however, the subsequent75

decrease in aspect ratio (during the final 10 s of melting) was accounted for by noting76

that by this stage of the melting process the crystals had become small enough for77

surface tension effects to begin to dominate [22, 43]. As a consequence, the needle78

tips with high curvature melted more quickly than the remainder of the crystals, in79

accordance with the Gibbs-Thomson law80

(1.2) u∗ = u∗m(1− γκ∗) on ∂Ω∗,81

which states that the actual melting temperature on a curved surface is not constant,82

but instead depends weakly on the mean curvature κ∗ (defined to be positive for a83

sphere) via the surface tension coefficient γ (defined to be γ = 2σ∗/ρsL, where σ∗84

measures surface energy effects with dimensions Nm−1 or Jm−2 and ρs is the density85

of the solid phase) [3]. Here ∂Ω∗ denotes the solid-melt interface. For the IDGE86

experiments, the surface tension coefficient is roughly γ ∼ 10−10 m.87

In this article, we are motivated by these issues to undertake a theoretical study88

of the one-phase quasi-steady Stefan problem. The mathematical problem is re-89

formulated in Section 2 with a Baiocchi transform for the special zero-surface-tension90

case. In Section 3, we go on to provide a near extinction analysis for a general shaped91

initial crystal, including numerical results for cases in which crystals ultimately melt92

to a single point or pinch off and break into two separate pieces. The role of surface93

tension is then explored in Section 4, while in Section 5 we consider an additional94

effect on the moving boundary, kinetic undercooling. We show that kinetic under-95

cooling acts as a de-stabilising term, and is effectively in competition with surface96

tension. When these two terms are considered simultaneously, we find that the aspect97

ratio of a prolate spheroid can initially increase before decreasing suddenly to unity in98

the extinction limit, which is the same behaviour as observed in the IDGE. We close99

in Section 6 with a summary of the key results and a brief discussion of how our work100

relates to the experiments described by Glicksman and co-workers [21, 22, 43]. An101

important point to note is that the quasi-steady assumption used in this article leads102

to a moving boundary problem that also describes bubble contraction in a porous103

medium [12, 28, 45]. Thus our study also describes the effect that surface tension has104

on the shape of a bubble in the limit that it contracts to a point. This connection is105

revisited in Section 6.106

2. Quasi-steady formulation with zero surface tension.107

2.1. Governing equations. Consider a solid substance (the crystal dendrite),108

initially at melting temperature u∗m occupying the region Ω∗(0), surrounded by the109

same substance in liquid form in R3 \Ω∗. In the far field, a higher temperature u∗∞ is110

applied, and thus melting proceeds until the crystal melts completely at the extinction111

time t∗e .112

Setting k to be the thermal diffusivity, we scale variables using113

(2.1) t =
k

`2β
t∗, x =

1

`
x∗, u =

u∗ − u∗m
u∗∞ − u∗m

,114

where ` is a characteristic length scale of the initial crystal shape, and β is the Stefan115
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4 L. C. MORROW ET AL.

number (1.1). The resulting one-phase Stefan problem for melting the crystal is116

in R3 \ Ω(t) :
1

β

∂u

∂t
= ∇2u,(2.2a)117

on ∂Ω : u = 0,(2.2b)118

on ∂Ω : Vn = −∂u
∂n

,(2.2c)119

as r →∞ : u→ 1,(2.2d)120121

where Vn represents the normal velocity of the solid-melt interface ∂Ω, defined to be122

negative for a shrinking surface.123

For what follows we shall take the quasi-steady limit β =∞, which is an appro-124

priate approximation for experiments in which the latent heat is large or the specific125

heat is small. As a result, the parabolic equation (2.2a) becomes Laplace’s equation126

in R3 \ Ω(t) : ∇2u = 0,(2.2e)127128

and thus we do not require an initial condition for u.129

As mentioned in the Introduction, the governing equations (2.2e) with (2.2b)-130

(2.2d) are also relevant for the problem of a bubble that is forced to contract in a131

saturated medium, where the fluid flow is governed by Darcy’s law [12, 28, 45], as132

well as the two-dimensional analogue for Hele-Shaw flow [15, 14, 42]. These equations133

also arise in other moving boundary problems, for example the small Péclet num-134

ber limit of advection-diffusion-limited dissolution/melting models [6, 27, 32, 53, 57],135

for which it is also of interest to track the moving boundary and predict its shape136

and location (the collapse point [53]) close to the extinction time; other closely re-137

lated advection-diffusion-like moving boundary problems in potential flow have similar138

governing equations in the small Péclet number limit [4, 7].139

2.2. Baiocchi transform. We use the Baiocchi transform defined by140

in R3 \ Ω(0) : w =

∫ t

0

u(x, t′) dt′(2.3a)141

in Ω(0) \ Ω(t) : w =

∫ t

ω(x)

u(x, t′) dt′,(2.3b)142

143

where we are using the notation t = ω(x) to denote the solid-melt interface ∂Ω. The144

Baiocchi transform is widely used in the analysis of moving boundary problems with145

boundary conditions of the form (2.2b)-(2.2c), for example [8, 13, 31, 36, 40, 45]. Note146

that while here we restrict ourselves to (2.2e), the approach is also applicable to (2.2a)147

[44, 46].148

Transforming the governing equations (2.2e) with (2.2b)-(2.2d), we derive the149

nonlinear moving boundary problem for w:150

in R3 \ Ω(0) : ∇2w = 0,(2.4a)151

in Ω(0) \ Ω(t) : ∇2w = 1,(2.4b)152

on ∂Ω : w = 0,(2.4c)153

on ∂Ω :
∂w

∂n
= 0,(2.4d)154

as r →∞ : w → t.(2.4e)155156

This manuscript is for review purposes only.



QUASI-STEADY CONDUCTION LIMITED MELTING 5

Once a solution for the Baiocchi variable w is determined, the temperature u can be157

recovered via u = ∂w/∂t. We note that an advantage of the Baiocchi transform is158

that it transforms the inhomogeneous boundary condition (2.2c) into a homogeneous159

boundary condition. Another is that time appears as a parameter in (2.4a)-(2.4e),160

so that the problem can be solved at any time without knowledge of the solution at161

previous times.162

2.3. Exact solution for prolate spheroid. For the case in which the initial163

crystal shape ∂Ω(0) is an ellipsoid, (2.4a)-(2.4e) can be solved in ellipsoidal coordi-164

nates exactly, as done as part of the analysis by McCue et al. [45]. The solution for165

the interface ∂Ω(t) remains ellipsoidal with constant aspect ratios for all time un-166

til extinction. An equivalent solution without the Baiocchi transform is provided in167

Howison [28].168

We present here a summary of this exact solution in the special case for which169

the initial crystal shape ∂Ω(0) is the prolate spheroid170

(2.5) x2 + y2 +
z2

z0(0)2
= 1,171

with initial aspect ratio A(0) = z0(0). (This special case, together with the case in172

which the crystal is initially an oblate spheroid, is also recorded by McCue et al. [45].)173

The exact solution is that ∂Ω(t) retains its prolate spheroidal shape as174

(2.6)
x2 + y2

ρ0(t)2
+

z2

z0(t)2
= 1,175

where z0(t) > 0 and ρ0(t) > 0 measure the major and minor axes of the dendrite,176

respectively, with constant aspect ratio A(t) = z0(t)/ρ0(t) = z0(0) (here the length177

scale ` is chosen so that ρ0(0) = 1). The full solution has the time-dependence178

(2.7)
z0(t)

z0(0)
= ρ0(t) =

√
1− t

te
,179

where180

(2.8) te =
z0(0)

4
√
z0(0)2 − 1

ln

(
z0(0) +

√
z0(0)2 − 1

z0(0)−
√
z0(0)2 − 1

)
.181

The result (2.8) is also derived in Glicksman et al. [21]. Although, as mentioned182

above, the aspect ratio of the melting crystals in the Isothermal Dendritic Growth183

Experiment was not constant, these authors make a rough guess for the average value184

of the aspect ratio over the first 50 seconds of melting, and then compare (2.7) with185

experimental results. Their agreement is quite good, reflecting the square root of time186

dependence near extinction.187

3. Analysis of zero-surface-tension problem. McCue et al. [45] were con-188

cerned primarily with analysing the near extinction behaviour for a variation of (2.4a)-189

(2.4e) in which Ω(0) coincides with an outer boundary (i.e., a finite-domain problem190

in which the crystal initially occupies the entire domain). Here we provide equiva-191

lent results for the full infinite-domain problem (2.4a)-(2.4e) and apply the level set192

method to support these findings.193
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3.1. Extinction time and extinction points. For a given initial crystal shape194

Ω(0), we wish to determine how long it takes to melt (the extinction time te) and the195

point at which the crystal eventually vanishes as t→ t−e (the extinction point xe). The196

convenient framework for this analysis is via the Baiocchi transform. As mentioned197

above, time appears as a parameter in (2.4a)-(2.4e), meaning we can skip to the198

extinction time to compute we(x) = w(x, te). It is convenient to set we = W (x) + te,199

so W satisfies the linear problem200

in R3 \ Ω(0) : ∇2W = 0,(3.1a)201

in Ω(0) : ∇2W = 1,(3.1b)202

as r →∞ : W → 0.(3.1c)203204

The extinction point xe is then the local minimum of W , and the extinction time is205

recovered via te = −W (xe). As noted by Entov & Etingof [15], (3.1a)-(3.1c) defines206

the dimensionless gravity potential of Ω(0), thus207

(3.2) W = − 1

4π

∫∫∫
Ω(0)

1

|x− x′| dV
′,208

which provides an interesting connection between our problem and gravity potential209

generated by a uniform body.210

Whilst in practice it is not feasible to compute W analytically for a general initial211

crystal shape Ω(0), such a calculation can be performed numerically. Indeed, we212

provide a number of simple examples in Subsection 3.4 in which we compute W for213

both convex and non-convex initial shapes. We include in those examples cases for214

which W has two local minima. In such instances, if the two local minima are equal,215

then the crystal must pinch off into two, with the local minima corresponding to the216

extinction points for each of the two satellite crystals. We also provide an example217

of the more complicated case in which there are two local minima that are not equal;218

here, the use of W can only predict the final extinction for the largest of the two219

satellite crystals.220

3.2. Near-extinction analysis. For the case of an axially symmetric initial221

crystal with the z axis pointing down the centreline, we can translate the coordinate222

system so that the extinction point xe lies on the origin. Since we = 0 at x = xe223

and xe is a local minimum of we, a simple Taylor series for this axially symmetric224

geometry implies that we ∼ a(x2 + y2) + bz2 as r → 0. Further, as a consequence of225

(3.1b), we then have226

(3.3) we ∼ a(x2 + y2) +

(
1

2
− 2a

)
z2 as r → 0,227

where 1/6 < a < 1/4. As we shall see, the parameter a is effectively all the melting228

crystal “remembers” from its initial condition; it is this single parameter that controls229

the aspect ratio of the crystal at extinction. Note that the higher order terms in (3.3)230

are not required in the following analysis (they would be for the special case a = 1/4,231

which represents the borderline between the type of extinction considered in this232

section and when a bubble breaks up into two, as treated in Subsection 3.4).233

In the limit t→ t−e , the inner region is for r = O(T ), where T (t) is a length scale234

defined so that the volume of the melting crystal is fixed to be 4πT 3/3. We write235
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w ∼ T 2Φ(X) as t→ t−e , where X = x/T , so that236

in R3 \ Ω0(0) :
∂2Φ

∂X2
+
∂2Φ

∂Y 2
+
∂2Φ

∂Z2
= 1,(3.4a)237

on ∂Ω0 : Φ = 0,
∂Φ

∂N
= 0,(3.4b)238

239

where Ω0 denotes the crystal which has volume 4π/3 in these self-similar coordinates,240

and N denotes a normal direction. In order to match with (3.3) we require that241

(3.4c) Φ ∼ a(X2 + Y 2) +

(
1

2
− 2a

)
Z2 − d+

1

3R
,242

as R → ∞, where d is a constant found as part of the solution to (3.4a)-(3.4c). We243

see from (3.4c) that a matching condition for the outer region is244

(3.5) w ∼ a(x2 + y2) +

(
1

2
− 2a

)
z2 − dT 2 +

T 3

3r
as r → 0.245

The solution to (3.4a)-(3.4c) in prolate spheroidal coordinates is provided in Ap-246

pendix A. According to this solution the dendrite boundary ∂Ω0 is described by247

(3.6)
X2 + Y 2

q2
0 − 1

+
Z2

q2
0

=
1

q
2/3
0 (q2

0 − 1)2/3
,248

where q0 is a parameter that is related to the special constant a by249

(3.7) a =
1

4
q2
0 −

1

8
q0(q2

0 − 1) ln

(
q0 + 1

q0 − 1

)
.250

Further, the constant d in (3.4c) is related implicitly to a by251

(3.8) d =
1

4
q

1/3
0 (q2

0 − 1)1/3 ln

(
q0 + 1

q0 − 1

)
.252

Note that the prolate spheroid approaches a perfect sphere in the limit a→ 1/6+, in253

which case d→ 1/2+.254

The outer region is for r = O(1), for which255

(3.9) w ∼ we − (t− te) +
T 2

3r
as t→ t−e .256

Matching with the inner gives the time-dependence257

(3.10) t = te − dT 2 +O(T 5) as T → 0,258

or, in other words,259

(3.11) T ∼ 1√
d

(te − t)1/2 as t→ t−e .260

Thus we see that, regardless of the shape of the initial crystal, the square root of time261

scaling determined experimentally in Glicksman et al. [21] is as expected.262
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In summary, the zero-surface-tension model predicts that, provided there is no263

pinch-off, an axially symmetric dendrite will melt to a spheroid in the extinction limit.264

While this spheroid could be prolate or oblate, we concentrate here on the prolate265

case, as this is the one observed in the IDGE [21, 22, 43]. The aspect ratio of the266

prolate spheroid at extinction is given by267

(3.12) A(te) =
q0√
q2
0 − 1

,268

which provides an implicit dependence of A on the constant a via (3.7). Here a is269

the only parameter that is required to characterise the initial dendrite shape (it is270

found by solving (3.2) and expanding we about xe). The time-dependence of the271

melting is given by (3.11), where the volume of the dendrite shrinks like 4πT 3/3 (in272

other words, T provides a natural length scale for the melting dendrite). Again, this273

time-dependence is related to the initial dendrite shape via the parameter a (since d274

is given by a through (3.8) and (3.7)).275

In the special case in which the dendrite is initially the prolate spheroid (2.5), then276

it retains its aspect ratio. This is, of course, the exact solution listed in Subsection 2.3.277

Finally, for sufficiently symmetric crystals we have a = 1/6 which gives d = 1/2.278

Here Φ = R2/2 − 1/2 + 1/3R and the dendrite becomes spherical in the limit with279

T ∼
√

2(te−t)1/2. The special case of an initially spherical dendrite remains spherical.280

At this point it is worth mentioning that for large Stefan numbers, β � 1, the281

scaling (3.11) eventually ceases to hold for the full classical Stefan problem with (2.2a)282

instead of (2.2e) [46]. However, this discrepancy would not be observed on the scale283

of the IDGE experiments.284

3.3. Null quadrature domains. It is worth relating some of the above ar-285

guments to well-known and long-established results [12, 18, 28]. First, by applying286

Green’s theorem it can be shown that287

(3.13)
d

dt

∫∫∫
R3\Ω(t)

Φ(x) dV = 0,288

where Φ is a suitable harmonic function and Ω(t) is the shape of a melting crystal289

from the infinite-domain problem (2.4a)-(2.4e) (Howison [28]). Noting that these290

quasi-steady problems with zero surface tension are time-reversible, we can seek so-291

called ‘ancient’ solutions for which the entire domain R3 \ Ω(t) vanishes in the limit292

t → −∞. From (3.13) it follows that for these ancient solutions R3 \ Ω(t) must293

be a null quadrature domain. The only suitable such domain is the exterior of an294

ellipsoid (see Karp [34] for a discussion on null quadrature domains). For any other295

initial crystal shape, the backwards problem with t decreasing leads to some kind296

of finite-time blow-up or perhaps a scenario in which part of the crystal boundary297

expands infinitely leaving behind ‘fjords’ or ‘tongues’ (these scenarios are much better298

understood in the two-dimensional Hele-Shaw problem; see also Howison [29, 30] for299

explicit examples of each case).300

As discussed in Section 3, for a melting crystal (of general initial shape) the301

generic limiting behaviour is that it becomes ellipsoidal in shape as t → t−e . This302

result can also be derived using an alternative approach, as suggested more recently303

by King & McCue [36], who treated the two-dimensional Hele-Shaw case. First, we304

see that for the integral in (3.13) to converge we could choose Φ = r`Y m` , where Y m`305

are spherical harmonics and ` is an integer such that ` ≤ −4. Rescaling lengths such306
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that r̄ = r/T , we have from (3.13) that307

(3.14)

∫∫∫
R3\Ω̄(t)

Φ(x̄) dV̄ = O(T−`−3) as T → 0 for ` ≤ −4.308

Thus, the left-hand side vanishes as T → 0, or t → t−e , meaning that the exterior of309

the crystal approaches a null quadrature domain in the limit, and thus the crystal310

itself approaches an ellipsoid in shape.311

3.4. Numerical examples. We present some numerical examples that demon-312

strate the key features discussed above. To solve (3.1a)-(3.1c) numerically, we formu-313

late a level set function, φ(x), such that φ > 0 for x ∈ Ω(0) and φ < 0 for x ∈ R3\Ω(0).314

Thus we can reformulate (3.1a) and (3.1b) as315

(3.15) ∇2W = H(φ),316

where H is the Heaviside function. We note that H(φ) is discontinuous at x ∈ ∂Ω(0),317

so for numerical purposes we implement a smoothed Heaviside function318

(3.16) Ĥ(φ) =


0 if φ < −δ,
1
2

(
1 + φ

δ + 1
π sin πφ

δ

)
if |φ| ≤ δ,

1 if φ > δ,

319

where δ = 1.5∆x. For this purpose, it is convenient to work in spherical polar320

coordinates (r, θ, ϕ) and represent the axially symmetric moving boundary ∂Ω by321

r = s(θ, t). Thus, (3.15) becomes322

1

r2

∂

∂r

(
r2 ∂W

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂W

∂θ

)
= Ĥ(φ).(3.17)323

324

The spatial derivatives in (3.17) are approximated using central finite differencing,325

with homogeneous Neumann boundary conditions applied at r = 0, θ = 0, and θ = π.326

The far-field boundary condition (3.1c) is incorporated using a Dirichlet-to-Neumann327

map described in Appendix B.2.2.328

3.4.1. Symmetric initial condition. We consider a selection of initial condi-329

tions to illustrate a few different qualitative behaviours. Again, using spherical polar330

coordinates (r, θ, ϕ) with ∂Ω denoted by r = s(θ, t), the first is the prolate spheroid331

(3.18) s(θ, 0) =
r0√

r2
0 cos2 θ + sin2 θ

,332

where r0 describes the initial aspect ratio. The second initial condition is a peanut-333

shaped interface described by334

(3.19) s(θ, 0) = r0 + (1− r0) cos2 θ,335

where r0 can be interpreted as a measure of the depth of the pinch in the middle of336

the peanut. Following Garzon et al. [19], the third initial condition considered is a337

dumbbell shaped interface of the form s(θ, 0) = (ρ∗(θ)2 + z∗(θ)2)1/2, where338

z∗(θ) = 1 + r0 sin2(θ/2),(3.20a)339

ρ∗(θ) = g(θ) + 2g(π − θ),(3.20b)340341
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with342

g(θ) =
√
r0k(θ)

(
e−(r20k(θ)2)/2 − e−r

2
0/2
)
,(3.20c)343

k(θ) = cos2(θ/2),(3.20d)344345

for 0 ≤ θ ≤ π/2; for π < θ ≤ 2π this initial condition is made symmetric by reflecting346

about θ = π/2.347

In Figure 2, we illustrate some numerical results by choosing parameter values348

from these three initial conditions. For the prolate spheroid (3.18) we provide results349

for r0 = 0.8, noting that this initial condition is obviously convex. For the peanut350

shaped surface (3.19), we choose r0 = 0.5, which is not convex but is instead mean351

convex. Finally, for the dumbbell shape (3.20a)-(3.20d), we choose r0 = 4.75, which352

again corresponds to a nonconvex shape which is still mean convex, but this time with353

a particularly thin neck region. In all of these case, we show in Figure 2 the initial354

shape, the numerical solution to (2.2b)-(2.2e) shortly before the extinction time, and355

the corresponding solution to the Baiocchi transform problem (3.1c) and (3.17).356

For both of the first two examples in Figure 2, namely (3.18) with r0 = 0.8357

and (3.19) with r0 = 0.5, the solution to (2.2b)-(2.2e) contracts to a single point358

at extinction. By observing the third column of Figure 2, we see this is consistent359

with the solution of (3.1c) and (3.17), which shows |W | having one local maximum at360

the origin, predicting one point at extinction. This comparison highlights that convex361

shapes and some nonconvex shapes will contract to a single point. The extinction time362

predicted by the Baiocchi transform is computed by evaluating |W | at xe (which, for363

this problem is the origin) giving the values te = 0.370 and te = 0.233 for (3.18)364

with r0 = 0.8 and (3.19) with r0 = 0.5, respectively. Comparing this to the extinction365

times computed from the numerical solution to (2.2b)-(2.2e), we find there is less than366

0.1% relative difference, suggesting excellent agreement.367

The equation (3.19) with r0 = 0.5 provides a good test for the prediction (3.12).368

For this purpose we take the solution to the Baiocchi transform problem (3.1), which369

in this case predicts that q0 = 1.100 and a = 0.215. As such, our prediction for the370

aspect ratio at extinction is A = 2.395. The time-dependent behaviour of the aspect371

ratio for our numerical solution to the full problem (using the level set method) is372

presented in Figure 3. This figure demonstrates how well these two results agree with373

other.374

For initial condition (3.20a)-(3.20d) with r0 = 4.75, Figure 2 shows different qual-375

itative behaviour. Here, we see that solutions to (2.2b)-(2.2e) will undergo pinch-off376

and ultimately the two satellite crystals will contract to separate points of extinction.377

Again, this is consistent with the solution to (3.1c) and (3.17) as the third column of378

Figure 2 indicates that |W | has two local maxima. By approximating the locations379

of these maxima and the values of |W | at these points, we find the Baiocchi trans-380

forms predicts that the interface will contract to extinction points at ze = ±0.577 at381

time t = 0.100. Comparing these results with the extinction locations and times ap-382

proximated from the numerical solution to (2.2b)-(2.2e), we find a relative difference383

less than 0.2%. This example shows, for symmetric initial conditions, how well the384

Baiocchi transform approach can be used to predict whether pinch-off will occur, as385

well as the extinction points and time.386

In summary, these numerical results indicate that for a given initial interface,387

∂Ω(0), each of the aspect ratio at extinction, the extinction time and location of the388

extinction point for an interface evolving according to (2.2b)-(2.2e) can be predicted389

from the solution to (3.1a)-(3.1c). Further, the indication is that this is true both390
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(3.18) with r0 = 0.8

(3.19) with r0 = 0.5

(3.20a)-(3.20d) with r0 = 4.75

Fig. 2: Numerical solution to (2.2b)-(2.2e) with initial conditions of the form (3.18),
(3.19), and (3.20a)-(3.20d), and the corresponding numerical solution to (3.1a)-(3.1c).
Numerical solutions to (2.2b)-(2.2e) are computed using the level set based method
described in Appendix B, while the numerical solution to (3.1c) and (3.17) is found
using the procedure described in Subsection 3.4. Solutions are computed on the
domain 0 ≤ θ ≤ π and 0 ≤ r ≤ 2 using 628× 400 equally spaced nodes.

for interfaces that contract to a single point of extinction, or undergo pinch-off and391

contract to multiple points of extinction, at least for symmetric initial conditions.392

Finally, these results illustrate the capacity of the level set based numerical scheme,393

presented in Appendix B, to accurately describe the dynamics of the interface once a394

change in topology has occurred.395

3.4.2. Asymmetric initial condition. The numerical solutions of (2.2b)-(2.2e)396

presented in Subsection 3.4.1 indicate that when ∂Ω(t) is sufficiently non-convex then397

the interface will undergo a change in topology. As initial conditions considered398

in Subsection 3.4.1 are symmetric along the major axis (about θ = π/2), the two399

interfaces which form after pinch-off will have the same extinction time. We now400

investigate a class of asymmetric initial conditions that undergo pinch-off into two401

surfaces of differing volumes. We expect the smaller of the two volumes to contract402

to a point first, followed by the larger, thus giving two distinct extinction times.403

We again consider an initial condition of the form of (3.20a)-(3.20d), but this404

time for 0 ≤ θ ≤ π. In Figure 4, we plot the time evolution of the numerical so-405
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Fig. 3: The evolution of the aspect ratio for the example initial condition (3.19) with
r0 = 0.5 is presented as a solid (blue) curve. The (red) dashed curve is the predicted
aspect ratio at extinction, given by (3.12). The agreement is quite good.

lution to (2.2b)-(2.2e) and the corresponding numerical solution to (3.1a)-(3.1c) for406

the representative case r0 = 5.1. We observe that the full time-dependent solution to407

(2.2b)-(2.2e) undergoes a change in topology at approximately t = 0.076, with crystal408

domain Ω(t) pinching off into two. The smaller of the two satellite crystals contracts409

to a point at ze = 0.564 when t = 0.086, followed by the remaining larger satellite410

crystal which contracts to a point at ze = −0.773 when t = 0.127. The corresponding411

numerical solution to the Baiocchi transform problem (3.17), Figure 4 indicates that412

|W | has two local maxima, located at ze = 0.506 and ze = −0.767, with |W | equal to413

0.092 and 0.127 at these points, respectively. Thus we see that the predicted values of414

the extinction points and times agree well for the larger of the two satellite crystals (as415

it should) but not at all for the smaller crystal. That our approach can only provide416

information about the extinction time and point for the largest satellite crystal is a417

minor limitation to the Baiocchi transform framework.418

4. Effects of surface tension. An inevitable consequence of melting a small419

crystal is that eventually the curvature will become large enough so that surface420

tension effects become important. For what follows, instead of (2.2b) we use the421

dimensionless version of the Gibbs-Thomson law (1.2), which is422

(4.1) on ∂Ω : u = −σκ,423

where σ = γu∗m/`(u
∗
∞ − u∗m) is the dimensionless surface tension coefficient, and κ is424

the dimensionless signed mean curvature.425

4.1. Linear stability analysis for near spherical crystal. It proves use-426

ful to outline the linear stability analysis for interfaces evolving according to (2.2c)-427

(2.2e) and (4.1) with a near-spherical initial condition. In spherical polar coordinates428

(r, θ, ϕ), we represent the axially symmetric moving boundary ∂Ω by r = s(θ, t), so429
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Fig. 4: Time evolution of the numerical solution to (2.2b)-(2.2e) (computed using
the level set based method described in Appendix B), and corresponding numerical
solution to (3.1a)-(3.1c) (found using the procedure described in Subsection 3.4). The
initial condition is (3.20a)-(3.20d) with r0 = 5.1. Solutions are computed on the
domain 0 ≤ θ ≤ π and 0 ≤ r ≤ 2 using 628× 400 equally spaces nodes.

that our problem is430

in r > s : 0 =
1

r2

∂

∂r

(
r2 ∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
,(4.2a)431

on r = s : st = ur −
1

s2
uθsθ,(4.2b)432

on r = s : u = σ
3ss2

θ − cot θs3
θ − s2(sθθ + sθ cot θ) + 2s3

s(s2 + s2
θ)

3/2
,(4.2c)433

as r →∞ : u ∼ 1,(4.2d)434435

We seek a perturbed spherical solution to (4.2a)-(4.2d) of the form436

u(r, θ, ϕ, t) = u0(r, t) + εu1(r, θ, t) +O(ε2),(4.3a)437

s(θ, t) = s0(t) + εs1(θ, t) +O(ε2),(4.3b)438439

where ε� 1. The leading order solution is440

(4.4) u0 = 1 +
2σ − s0

r
, s0 =

8σ2 ln |(r0 − 2σ)/(s0 − 2σ)|+ 2t+ r0(4σ + r0)

4σ + s0
.441
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where s0(0) = r0. For the O(ε) system,442

in r > s0 : 0 =
∂u1

∂r

(
r2 ∂u1

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂u1

∂θ

)
,(4.5a)443

on r = s0 :
∂s1

∂t
=
∂u1

∂r
+ s1

∂2u0

∂r2
,(4.5b)444

on r = s0 : u1 + s1
∂u0

∂r
= −σ 2s1 + cot θ∂θs1 + ∂2

θs1

s2
0

,(4.5c)445

as r →∞ : u1 ∼ 0,(4.5d)446447

the solutions are of the form448

(4.6) u1(r, θ, t) =

∞∑
n=2

Anr
−nPn(cos θ), s1(θ, t) =

∞∑
n=2

γn(t)Pn(cos θ)449

where An is a sequence of unknown coefficients, Pn is the nth Legendre polynomial,450

and γn is the nth mode of perturbation to the sphere. We are able to eliminate An451

to obtain452

(4.7)
1

γn

dγn
ds0

=
(n− 1)((n2 + 3n+ 4)σ + s0)

s0(s0 + 2σ)
.453

Since (1/γn)dγn/ds0 → 0 in the limit that s0 → 0 for n ≥ 2, we see that each mode of454

perturbation is stable, and a perturbed sphere will evolve to a sphere in the extinction455

limit, as expected.456

The special case in which the initial condition is the prolate spheroid with major457

and minor axes r0 + ε and r0, respectively, then458

s(θ, 0) =
r0(r0 + ε)√

(r0 cos θ)2 + ((r0 + ε) sin θ)2
,459

= r0 + ε

(
1

2
+

2

3
P2(cos θ)

)
+O(ε2).(4.8)460

461

That is, γ2(0) = 2/3 and γn(0) = 0 for n ≥ 3. This initial condition has an aspect462

ratio of 1 + ε/r0 +O(ε2). The exact solution for γ2 is463

γ2 =
2s7

0

3r7
0

(
r0 + 2σ

s0 + 2σ

)6

,(4.9a)464
465

and the aspect ratio for this particular initial condition therefore becomes466

(4.10) A(s0) = 1 + ε
3γ2

2s0
+O(ε2).467

Note that when σ = 0, then 3γ2/2s0 = 1/r0, resulting in the aspect ratio remaining468

constant, which is consistent with the known exact solution of Subsection 2.3. Oth-469

erwise, for σ > 0, the aspect ratio decreases monotonically to unity, as shown later in470

Figure 5.471
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4.2. Long thin needle problem. We consider here the limit of a long thin472

melting dendrite. Suppose the axially-symmetric shape of the dendrite is given by473

ρ = S(z, t) where ρ2 = x2 + y2. Suppose also that S0(z) = S(z, 0), ρ0(t) = S(0, t),474

S(z0(t), t) = 0, where α = z0(0)/ρ0(0)� 1 such that the initial aspect ratio, A(0) =475

1/α, is large.476

The inner region is for r = O(ρ0(t)). Here the melting is almost two-dimensional477

with ∂u/∂z � 1 and ∂S/∂z � 1 so that, to leading order,478

in ρ > S(z, t) :
∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
= 0,(4.11a)479

on ρ = S(z, t) : u = −σ
ρ
,(4.11b)480

on ρ = S(z, t) :
∂S

∂t
= −u

ρ
.(4.11c)481

482

The solution to (4.11a)-(4.11c) is483

(4.12) u = −S ∂S
∂t

ln(ρ/S),484

where the form for S is determined by the missing far-field condition, which is found485

by considering the outer region.486

In this outer region, which is for r = O(z0(t)), the dendrite appears as a slit. We487

scale ρ̃ = ρ/(αρ0(t)), t̃/ lnα and rewrite the inner solution (4.12) to be488

(4.13) u = −S ∂S
∂t̃
− σ

S
− S ∂S

∂t̃

ln(ρ0ρ̃/S)

lnα
.489

The leading order solution in the outer region is u = 1, thus, after matching with the490

leading order term in (4.13) as α→∞, we find491

(4.14)
t

lnα
= −1

2
(S2 − S2

0) + σ(S − S0)− σ ln

(
S + σ

S0 + σ

)
.492

For the zero surface tension case σ = 0, we can solve (4.14) explicitly to give493

(4.15) S(z, t) =

(
S2

0 −
2t

lnα

)1/2

,494

again providing square root time dependence.495

Of particular interest is the special case in which the initial dendrite is the prolate496

spheroid (2.5). Here ρ0 = α and z0(0) = 1, so initially the dendrite has the aspect497

ratio A(0) = 1/α. From (4.14) we find the interface is given implicitly by498

(4.16) 1− 2t

lnα
= S2 +

z2

α2
+ 2σ

[(
1− z2

α2

)1/2

− s+ ln

(
S + σ

(1− z2/α2)1/2 + σ

)]
.499

Note that the small parameter in this limit is 1/ lnα, which suggests the analysis here500

is valid only for extremely large aspect ratios.501
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4.3. Numerical results for canonical problem. For the melting prolate502

spheroidal crystal considered in Subsection 2.2, whose surface is (2.6), we find the503

mean curvature is largest near the tip, given by504

(4.17) κ =
z0(t)

ρ0(t)2
=

t
1/2
e z0(0)

(te − t)1/2
.505

Thus the right hand side of (4.11b) becomes O(1) when te − t = O(σ2), suggesting506

we rescale according to507

(4.18) te − t = σ2t̂, x = σx̂, u = û,508

and treat the following problem509

in R3\Ω̂(t̂) : ∇̂2û = 0,(4.19a)510

on ∂Ω̂ : û = −κ̂,(4.19b)511

on ∂Ω̂ : v̂n = −∂û
∂n̂

,(4.19c)512

as r̂ →∞ : û→ 1,(4.19d)513514

when t̂ = O(1), |x̂| = O(1), where hats denote scaled quantities. For the case in which515

the initial crystal, Ω̂(0), is a prolate spheroidal in shape, this is a canonical problem516

for melting a solid. This one parameter in the problem is the initial aspect ratio.517

Using the numerical scheme described in Appendix B, we solve (4.19a)-(4.19d)518

for û and Ω̂. We first consider a near spherical prolate spheroid initial condition519

such that the initial aspect ratio is close to unity. Figure 5 compares the aspect ra-520

tio of the numerical solution to (4.19a)-(4.19d) with α = 0.85 with the aspect ratio521

as predicted by linear stability analysis given by (4.10). This figure shows excellent522

agreement between the numerical solution and linear stability analysis, confirming523

that the numerical scheme presented in Appendix B is able to describe the behaviour524

of the interface as the aspect ratio decreases to unity. Further, we numerically solve525

(4.19a)-(4.19d) with α = 1/6, and plot the time evolution of the solution and cor-526

responding aspect ratio in Figure 6. As expected, this figure shows that the aspect527

ratio decays to unity in the limit that t→ t−e .528

5. Kinetic undercooling. In this section, we very briefly consider the effects529

of extending the dynamic boundary condition (4.1) to include a kinetic undercooling-530

type term:531

(5.1) on ∂Ω : u = cvn − σκ,532

where vn is the normal velocity of ∂Ω and c is the kinetic coefficient. An argument533

for this extended boundary condition is that (4.1) can be derived under equilibrium534

conditions, while (5.1) is a corrected version that takes into account nonequilibrium535

kinetic effects [24, 41]. Physically, a nonzero kinetic coefficient c > 0 penalises high536

interface speeds, which is important near extinction since our interface speed scales537

like (te− t)−1/2. A wide variety of studies of Stefan problems have considered kinetic538

undercooling [2, 3, 10, 11, 16, 17, 35]. The other important previous study is Dallaston539

& McCue [9], where the two-dimensional analogue of the quasi-steady problem (2.2e),540

(5.1), (2.2c)-(2.2d) is treated in some detail.541
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Fig. 5: Comparison of the aspect ratio of the numerical solution to (4.19a)-(4.19d)
(blue) with that predicted by linear stability analysis given by (4.10) (dashed red).
Initial aspect ratio of the interface is A(0) = 20/17. Numerical solution is computed
on the domain 0 ≤ θ ≤ π and 0 ≤ r ≤ 1.5 with 314× 150 equally spaced nodes.

Fig. 6: Left: Numerical solution to (4.19a)-(4.19d) at t = 0, 0.0033, and 0.0052
computed using the scheme presented in Appendix B. Initial condition is of the form
(3.18) with r0 = 1/6. Computations are performed on the domain 0 ≤ θ ≤ π and
0 ≤ r ≤ 1.7 with 624 × 340 equally spaced nodes. Right: The corresponding aspect
ratio as a function of time.

Following the linear stability analysis outlined in Subsection 4.1 using (5.1) with542

c > 0, we find the second mode of perturbation satisfies543

(5.2) γ2 =
2s2

0

3r2
0

(
3c+ s0

2c+ r0

) 3c−10σ
3c−2σ

(
r0 + 2σ

s0 + 2σ

) 6(c−2σ)
3c−2σ

,544

from which we see that545

(5.3) lim
s0→0+

γ2

s0
= 0,546

suggesting that an initially prolate spheroidal crystal will tend to a sphere in the547

extinction limit. This conclusion is that same as before in Subsection 4.1 when c = 0.548

On the other hand, a significant difference in qualitative behaviour is that the aspect549

ratio with c > 0 may first increase and then decrease (to unity), which is a feature550
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Fig. 7: Left: The aspect ratio of a near spherical prolate spheroid as predicted by
linear stability analysis from (4.10) with σ = 0.075 and c = 1. Right: The aspect ratio
of a melting PVA crystal [22], reproduced with permission from Springer Nature.

not observed when c = 0. The turning point can be calculated via551

(5.4)
d

ds0

(
γ2

s0

)
= 0 ⇒ s0 =

2σc

c− 4σ
.552

Given s0 is defined on the domain 0 ≤ s0 ≤ r0, the aspect ratio will monotonically553

decrease to unity if554

(5.5)
2σc

c− 4σ
< 0, or r0 >

2σc

c− 4σ
;555

otherwise, the aspect ratio will be non-monotone.556

Our work is motivated in part by a series of experiments performed as part of557

the IDGE [21, 22, 43]. In these experiments, it was observed that the aspect ratio of558

melting crystals increased for a period of time before decreasing to unity at extinction.559

In the context of the results presented in this section, Figure 7 illustrates the aspect560

ratio of a (near-spherical) prolate spheroid predicted by linear stability analysis and561

the aspect ratio of the melting PVA crystals [22]. This figure shows that when both562

the effects of surface tension and kinetic undercooling are considered, the solution to563

(2.2c)-(2.2e) and (5.1) is qualitatively similar to the experimental results (while of564

course the scale is different).565

6. Discussion. In this paper, we have studied a quasi-steady one phase Stefan566

problem for melting an axially symmetric crystal. In Section 3 we treat a zero-surface-567

tension model and use analytical tools to show that axially symmetric crystals will568

tend to prolate spheroids in the limit that they melt completely, namely t→ t−e , with569

an aspect ratio that depends on the initial condition. The point to which the crystals570

ultimately shrink, together with the melting time, is predicted by this analysis and571

confirmed using a novel numerical scheme based on the level set method (presented572

in Appendix B). An advantage of this scheme is that we are also able to present573

numerical results for crystals that undergo pinch-off and contract to multiple points574

of extinction.575

We consider the effects of surface tension by the Gibbs-Thomson law (1.2) in576

Section 4. By performing linear stability analysis on the spherical solution, we show577

that surface tension acts to smooth out perturbations to the interface, suggesting it578
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becomes spherical in the extinction limit. A numerical study of canonical problem579

confirms this prediction. These results are as expected and also indicated by the ex-580

perimental results summarised by Glicksman and co-workers [21, 22, 43]. However,581

the one feature of the IDGE not described by the model with surface tension is the582

non-monotonic behaviour of the aspect ratio, where the aspect ratio first increases as583

the crystal becomes very long and thin, and then very quickly decreases to unity as584

surface tension ultimately acts to produce a perfect sphere in the extinction limit. In585

order to mimic this non-monotonic behaviour, we have included the effects of kinetic586

undercooling in the model in Section 5, which shows that the competition between587

kinetic effects and surface tension does indeed produce the qualitative behaviour ob-588

served.589

A key assumption in our paper is that the Stefan number in (2.2a) is taken to590

be large, namely β � 1, so that (2.2a) reduces to (2.2e) and our moving boundary591

is therefore quasi-steady. There are two issues related to this assumption that we592

wish to mention. First, our problem for melting a crystal is the same as that for a593

bubble contracting in a porous medium where the flow is governed by Darcy’s law594

[12, 28, 45], although in that context the far-field (Dirichlet-type) boundary condition595

(2.2d) should probably be replaced with a flux condition that dictates how quickly596

the bubble volume is decreasing (in two dimensions the equations describe bubble597

contraction in a Hele-Shaw cell [15, 14, 42]). For the case in which a bubble pinches598

off to produce two shrinking bubbles, the problem formulation would also need to599

consider two points of extraction that coincide with the eventual extinction points.600

The second issue is that, strictly speaking, for the extremely late stages of melting,601

our quasi-steady model with (2.2e) is no longer applicable in the large Stefan number602

limit, and instead (2.2a) must be retained. The mathematical details of such an603

exponentially short final-melting stage have been recorded in a number of previous604

studies [1, 26, 44, 46, 55].605

Acknowledgments. SWM and LCM acknowledge the support of the Australian606

Research Council Discovery Project DP140100933. We are grateful to the anonymous607

referees for their helpful feedback.608

Appendix A. Prolate spheroids with constant aspect ratio.609

To solve the inner problem (3.4a)-(3.4c) we employ prolate spheroidal coordinates610

(ξ, η, φ) defined by611

X = k sinh ξ sin η cosφ(A.1a)612

Y = k sinh ξ sin η sinφ(A.1b)613

Z = k cosh ξ cos η,(A.1c)614615

where ξ ≥ 0, 0 ≤ η ≤ π, 0 ≤ φ < 2π, and k is a constant to be determined below.616

The crystal boundary ∂Ω0 is described by ξ = ξ0 or, equivalently,617

(A.2)
X2 + Y 2

sinh2 ξ0
+

Z2

cosh2 ξ0
= k2.618

Motivated by the relationship619

(A.3)

a(X2+Y 2)+

(
1

2
− 2a

)
Z2 =

1

2
k2

[(
1

2
− a
)

cosh2 ξ − a
]
+

1

2
k2

[(
1

2
− 3a

)
cosh2 ξ + a

]
cos 2η,620

we look for a solution of the form621

(A.4) Φ = f1(q) + f2(q) cos 2η,622
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where q = cosh ξ and q0 = cosh ξ0 and obtain a coupled system of two second order623

(Legendre-type) differential equations for f1 and f2. These (and the constant k) are624

solved subject to the four conditions f1 = f ′1 = f2 = f ′2 = 0 on q = q0, and the625

far-field condition (3.4c) to give626

f1 =
1

2
k2

[(
1

2
− a
)
q2 − a

]
− d+

1

8
k2q0(q2

0 − 1)

[
q − 1

2
(q2 − 3) ln

(
q + 1

q − 1

)]
,

(A.5)

627

f2 =
1

2
k2

[(
1

2
− 3a

)
q2 + a

]
− d+

1

8
k2q0(q2

0 − 1)

[
3q − 1

2
(3q2 − 1) ln

(
q + 1

q − 1

)]
,

(A.6)

628
629

where630

(A.7) k = q
−1/3
0 (q2

0 − 1)−1/3,631

and d is given by (3.8). The important relationship between q0 and the special con-632

stant a is given by (3.7).633

Appendix B. Numerical solution - A level set approach.634

To find the numerical solution of (2.2b)-(2.2e), we implement a level set based635

approach. The level set method (LSM), first proposed by Osher and Sethian [52], is a636

tool used to study a wide range of moving boundary problems. We refer the reader to637

Osher & Fedkiw [51] and Sethian [54] for comprehensive overviews of implementation638

strategies and applications. The LSM utilises an Eulerian approach by representing639

an n-dimensional interface, ∂Ω(t), as the zero level set of a n+ 1-dimensional surface,640

φ(x, t), such that641

(B.1) ∂Ω(t) = {x|φ(x, t) = 0} .642

By representing the interface implicitly, the LSM can be used to describe complex643

behaviour such as the changes in topology observed in Figure 2, while operating on a644

simple regular two-dimensional grid.645

The evolution of the level set function φ is described by the level set equation646

(B.2)
∂φ

∂t
+ F |∇φ| = 0 ,647

where F is a continuous function defined on all of the computational domain, satisfying648

F = Vn on x = ∂Ω(t). In the context of (2.2b)-(2.2e), by noting that the outward649

normal of φ is n = ∇φ/|∇φ|, a suitable expression for F on and outside the interface650

is651

(B.3) F =
∇u · ∇φ
|∇φ| x ∈ R3\Ω(t).652

This leaves the matter of defining a suitable extension of F to inside the inter-653

face. Among several possibilities in the level set literature, we opt for a biharmonic654

extension as proposed by Moroney et al. [49], and compute F inside the interface to655

satisfy656

(B.4) ∇4F = 0 x ∈ Ω(t),657
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together with the boundary conditions that F and ∂F/∂n are continuous across ∂Ω(t).658

This method of extension shares the main property of the LSM itself, in not requiring659

the location of the interface to be calculated explicitly. To solve (B.4), we formulate660

the biharmonic stencil over the entire domain, which is then modified so that values661

of F outside the interface, whose location is determined from the sign of φ, are not662

overwritten. The resulting linear system is solved using LU decomposition. This663

extension is a variant of a two-dimensional thin plate spline interpolant defined on664

the level set grid.665

B.1. General algorithm. The algorithm used to solve (2.2b)-(2.2e) numeri-666

cally is outlined as follows:667

Step 1 For a given initial condition s(θ, 0), construct a level set function φ(r, θ, 0)668

such that φ < 0 inside the interface and φ > 0 outside the interface. This669

function is then converted to a signed distance function using the method of670

crossing times as described by Osher & Fedkiw [51].671

Step 2 Compute the temperature, u, on the domain r ≥ s(θ, t) using the procedure672

described in Appendix B.2.673

Step 3 Compute F according to (B.3), where the derivatives are evaluated using674

central finite differences. F is extended over the entire computational domain675

by solving (B.4) at nodes where φ < 0, with boundary data from step 3.676

Step 4 Update φ by advancing the level set equation given by (B.2), where the time677

step is ∆t = 0.25×∆x/max |F |. We discretise the spatial derivatives in (B.2)678

using a ENO2 scheme for the spatial derivatives and integrate in time using679

second order Runge-Kutta where ∆t = 0.25×∆r/max |F |.680

Step 5 Reinitialise φ every 5 time-steps to a signed distance function by solving the681

reinitialisation equation682

(B.5) ∂τφ+ S(φ)(|∇φ| − 1) = 0,683

where684

(B.6) S(φ) =
φ√

φ2 + ∆r2
.685

We use 5 pseudo-timesteps with ∆τ = 0.2∆r.686

Step 6 Repeat steps 2-5 until the desired simulation time is attained.687

B.2. Solving for temperature. Evaluating the speed function F in the level688

set equation (B.2) requires first calculating the temperature u. This is achieved by689

using a modified finite difference stencil for Laplace’s equation in the region outside690

the interface. For nodes away from the interface, a standard 5-point stencil is used691

such that the discrete equation is692

0 =
ui−1,j − 2ui,j + ui+1,j

∆r2
+

2

ri,j

ui+1,j − ui−1,j

2∆r

+
1

r2
i,j

ui,j−1 − 2ui,j + ui,j+1

∆θ2
+

cot θ

r2
i,j

ui,j+1 − ui,j−1

2∆θ
.

(B.7)693

For the singularity at θ = 0, noting that ∂u/∂θ = 0 and using L’Hôpital’s rule then694

lim
θ→0+

cot θ
∂u

∂θ
=
∂2u

∂θ2
.(B.8)695

696
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∇2u = 0

∇4F = 0

u→ 1

r = R

u = σκ+ cvn

Fig. 8: Schematic of how the speed function, F , is computed for each time step. Blue
region denotes where temperature, u, is solved for using finite differences. This finite
difference stencil must be adjusted to incorporate the dynamic boundary condition
(Appendix B.2.1). To incorporate the far-field boundary condition, we impose an
artificial boundary at r = R and implement a Dirichlet to Neumann mapping (Ap-
pendix B.2.2). F is computed outside the interface using (B.3), and is extended to
be defined over the entire computational domain by solving the biharmonic equation.

The same procedure is applied at θ = π. Difficulties arise when attempting to in-697

corporate the dynamic condition (2.2b) on the interface and the far-field boundary698

condition (2.2d). We detail the methodology used to overcome each of these difficul-699

ties in Appendices B.2.1 and B.2.2, respectively. A schematic of the problem is given700

in Figure 8, which illustrates the different equations to be solved in each part of the701

computational domain.702

We note that since the governing equation for temperature satisfies Laplace’s703

equation, an alternative approach for computing the temperature u is the boundary704

integral method, which can be coupled with the level set method to solve problems705

where changes in topology occur [19]. However, an advantage of using a finite differ-706

ence stencil is that it can easily be adapted to problems where the boundary integral707

method is not applicable. For example, we have used a similar method to the one708

presented in this section to study non-standard Hele-Shaw flow where pressure is not709

harmonic and for which the boundary integral method is much less suitable [50].710

B.2.1. Incorporating the dynamic boundary condition. Special consider-711

ation must be taken when solving for nodes adjacent to the interface as we can no712

longer use the second order central differencing scheme (B.7). Instead we follow the713

work of Chen et al. [5] and approximate the spatial derivatives by fitting a quadratic714

polynomial from values on and near the interface and differentiating this polynomial715

twice. Supposing the interface is located between two nodes (i − 1, j) and (i, j), the716

quadratic is fitted using the three points (rb, ub), (ri,j , ui,j), and (ri+1,j , ui+1,j). Here717

rb denotes the location of the interface and ub is the temperature at the interface.718

The value of rb is found by noting that φ is a signed distance function and so the719

distance between rb and ri,j , denoted h, can be calculated by720

(B.9) h = ∆r

∣∣∣∣ φi,j
φi,j − φi−1,j

∣∣∣∣ .721
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Thus (B.7) becomes722

∂2u

∂r2
+

2

r

∂u

∂r
→
(

2

h(h+ ∆r)
− 2

ri,j

∆r

h(∆r + h)

)
ub +

(
2

ri,j

∆r − h
h∆r

− 2

h∆r

)
ui,j

+

(
2

∆r(h+ ∆r)
+

2

ri,j

h

∆r(h+ ∆r)

)
ui+1,j .

(B.10)

723

The same procedure is applied if the interface is between ri and ri+1, or in the724

azimuthal direction.725

The value of ub is determined by the dynamic condition (5.1), where in the case726

of surface tension the mean curvature term727

κ = ∇ ·
( ∇φ
|∇φ|

)
728

is approximated using central finite differences, while the normal velocity from the729

previous time step is used for the kinetic undercooling term.730

B.2.2. The far-field condition. Special consideration must also be given when731

considering the boundary condition at r → ∞. One method for simulating this far-732

field condition is to make the computational domain much larger than the radius733

of the interface and then impose u = 1 on the outer boundary. However, this is734

computationally expensive as very large domains must be used to form an accurate735

solution. Instead, we simulate the far-field condition using the Dirichlet-to-Neumann736

(DtN) method [20]. This method is implemented by introducing a spherical artificial737

boundary, R, which is larger than the radius of the interface, i.e. R > s(θ, t). Outside738

of this boundary739

in r > R : ∇2u = 0,(B.11a)740

on r = R : u = f(θ),(B.11b)741

as r →∞ : u ∼ 1,(B.11c)742743

holds, where f(θ) is an unknown function. This problem can be solved exactly via744

separation of variables giving745

(B.12) u(r, θ, t) = 1 + (c0 − 1)
R

r
+

∞∑
n=1

cn

(
R

r

)n+1

Pn(cos θ),746

where747

(B.13) cn =
2n+ 1

2

∫ π

0

f(θ)Pn(cos θ) sin θdθ748

and Pn denotes the nth Legendre polynomial. Matching this outer solution with the749

inner numerical solution on the artificial boundary R provides the necessary Neumann750

boundary conditions for the numerical scheme. By taking the derivative of (B.12)751

with respect to r at r = R and evaluating (B.13) using the trapezoidal rule, the finite752

difference stencil for the radial derivatives is updated with753

ui−1,j − 2ui,j + ui+1,j

∆r2
+

2

ri,j

ui+1,j − ui−1,j

2∆r
→

2(ui−1,j − ui,j)
∆r2

+ 2

(
1

∆r
+

1

R

)
f ′(θj),

(B.14)754

This manuscript is for review purposes only.



24 L. C. MORROW ET AL.

where755

(B.15) f ′(θj) =
1

R
− (n+ 1)(∆θ)

R

m−1∑
k=1

wj,ku(R, θk, t),756

and757

(B.16) wj,k =

∞∑
n=0

(n+ 1)Pn(cos θj)Pn(cos θk) sin θk.758

From a practical perspective, we cannot, of course, evaluate the series in (B.16) using759

an infinite number of terms, but have found that using 10 terms gives sufficient accu-760

racy. Furthermore, it is a straightforward exercise to use the DtN method for other761

types of far-field boundary conditions such as flux condition for fluid flow whereby762

∂u/∂r ∼ 1/r2 as r →∞.763
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