608 research outputs found

    Curvatons in Supersymmetric Models

    Full text link
    We study the curvaton scenario in supersymmetric framework paying particular attention to the fact that scalar fields are inevitably complex in supersymmetric theories. If there are more than one scalar fields associated with the curvaton mechanism, isocurvature (entropy) fluctuations between those fields in general arise, which may significantly affect the properties of the cosmic density fluctuations. We examine several candidates for the curvaton in the supersymmetric framework, such as moduli fields, Affleck-Dine field, FF- and DD-flat directions, and right-handed sneutrino. We estimate how the isocurvature fluctuations generated in each case affect the cosmic microwave background angular power spectrum. With the use of the recent observational result of the WMAP, stringent constraints on the models are derived and, in particular, it is seen that large fraction of the parameter space is excluded if the Affleck-Dine field plays the role of the curvaton field. Natural and well-motivated candidates of the curvaton are also listed.Comment: 34 pages, 5 figure

    Curvaton reheating: an application to braneworld inflation

    Get PDF
    The curvaton was introduced recently as a distinct inflationary mechanism for generating adiabatic density perturbations. Implicit in that scenario is that the curvaton offers a new mechanism for reheating after inflation, as it is a form of energy density not diluted by the inflationary expansion. We consider curvaton reheating in the context of a braneworld inflation model, {\em steep inflation}, which features a novel use of the braneworld to give a new mechanism for ending inflation. The original steep inflation model featured reheating by gravitational particle production, but the inefficiency of that process brings observational difficulties. We demonstrate here that the phenomenology of steep inflation is much improved by curvaton reheating.Comment: 8 pages RevTeX4 file with two figures incorporated. Improved referencing, matches PRD accepted versio

    A Model of Direct Gauge Mediation

    Get PDF
    We present a simple model of gauge mediation (GM) which does not have a messenger sector or gauge singlet fields. The standard model gauge groups couple directly to the sector which breaks supersymmetry dynamically. This is the first phenomenologically viable example of this type in the literature. Despite the direct coupling, the model can preserve perturbative gauge unification. This is achieved by the inverted hierarchy mechanism which generates a large scalar expectation value compared to the size of supersymmetry breaking. There is no dangerous negative contribution to the squark, slepton masses due to two-loop renormalization group equation. The potentially non-universal supergravity contribution to the scalar masses can be suppressed enough to maintain the virtue of the gauge mediation. The model is completely chiral, and one does not need to forbid mass terms for the messenger fields by hand. Beyond the simplicity of the model, it possesses cosmologically desirable features compared to the original models of GM: an improved gravitino and string moduli cosmology. The Polonyi problem is back unlike in the original GM models, but is still much less serious than in hidden sector models.Comment: LaTeX, 12 page

    Right-handed Sneutrinos as Nonthermal Dark Matter

    Full text link
    When the minimal supersymmetric standard model is augmented by three right-handed neutrino superfields, one generically predicts that the neutrinos acquire Majorana masses. We postulate that all supersymmetry (SUSY) breaking masses as well as the Majorana masses of the right-handed neutrinos are around the electroweak scale and, motivated by the smallness of neutrino masses, assume that the lightest supersymmetric particle (LSP) is an almost-pure right-handed sneutrino. We discuss the conditions under which this LSP is a successful dark matter candidate. In general, such an LSP has to be nonthermal in order not to overclose the universe, and we find the conditions under which this is indeed the case by comparing the Hubble expansion rate with the rates of the relevant thermalizing processes, including self-annihilation and co-annihilation with other SUSY and standard model particles.Comment: 17 pages v.2: References adde

    Cosmological Moduli Problem and Thermal Inflation Models

    Full text link
    In superstring theories, there exist various dilaton and modulus fields which masses are expected to be of the order of the gravitino mass m3/2m_{3/2}. These fields lead to serious cosmological difficulties, so called ``cosmological moduli problem'', because a large number of moduli particles are produced as the coherent oscillations after the primordial inflation. We make a comprehensive study whether the thermal inflation can solve the cosmological moduli problem in the whole modulus mass region mϕ∌10eV−104GeVm_\phi \sim 10 eV - 10^4 GeV predicted by both hidden sector supersymmetry (SUSY) breaking and gauge-mediated SUSY breaking models. In particular, we take into account the primordial inflation model whose reheating temperature is so low that its reheating process finishes after the thermal inflation ends. We find that the above mass region mϕ(≃m3/2)∌10eV−104GeVm_\phi (\simeq m_{3/2}) \sim 10 eV - 10^4 GeV survives from various cosmological constraints in the presence of the thermal inflation.Comment: 49 pages, 17 figure

    Chargino Contributions in B→ϕKSB \to \phi K_S Asymmetry

    Full text link
    CP asymmetry in B→ϕKSB \to \phi K_S decay is studied in a special context of supersymmetry theories, in which the charginos play an important role. We find that in addition to the gluino, chargino can also make large contributions to CP asymmetry in B→ϕKSB \to \phi K_S decay. After considering the constraints from B→J/psiKSB \to J/psi K_S decay, we study three special scenarios: (a). Large mixing on left-handed charm and top squarks (LL mixing); (b). Large mixing on right-handed charm and top squarks (RR mixing); (c). Large mixing on left-handed charm and top squarks plus right-handed charm and top squarks (LL + RR mixing). We show quantitatively that because of large squark mixing within second and third generations, an O\mathcal O(1) effect on CP violation in B→ϕKSB \to \phi K_S is possible

    Cosmological perturbations from varying masses and couplings

    Full text link
    We study the evolution of perturbations during the domination and decay of a massive particle species whose mass and decay rate are allowed to depend on the expectation value of a light scalar field. We specialize in the case where the light field is slow-rolling, showing that during a phase of inhomogeneous mass-domination and decay the isocurvature perturbation of the light field is converted into a curvature perturbation with an efficiency which is nine times larger than when the mass is fixed. We derive a condition on the annihilation cross section and on the decay rate for the domination of the massive particles and we show that standard model particles cannot dominate the universe before nucleosynthesis. We also compare this mechanism with the curvaton model. Finally, observational signatures are discussed. A cold dark matter isocurvature mode can be generated if the dark matter is produced out of equilibrium by both the inflaton and the massive particle species decay. Non-Gaussianities are present: they are chi-square deviations. However, they might be too small to be observable.Comment: 21 pages, 4 figures, published versio

    Dark Matters in Axino Gravitino Cosmology

    Full text link
    It is suggested that the axino mass in the 1 MeV region and gravitino mass in the eV region can provide an axino lifetime of order of the time of photon decoupling. In this case, some undecayed axinos act like cold dark matters and some axino decay products (gravitinos and hot axions) act like hot dark matters at the time of galaxy formation.Comment: 9 pages, Late

    Supersymmetry and the Anomalous Anomalous Magnetic Moment of the Muon

    Get PDF
    The recently reported measurement of the muon's anomalous magnetic moment differs from the standard model prediction by 2.6 standard deviations. We examine the implications of this discrepancy for supersymmetry. Deviations of the reported magnitude are generic in supersymmetric theories. Based on the new result, we derive model-independent upper bounds on the masses of observable supersymmetric particles. We also examine several model frameworks. The sign of the reported deviation is as predicted in many simple models, but disfavors anomaly-mediated supersymmetry breaking.Comment: 4 pages, 4 figures, version to appear in Phys. Rev. Let

    Curvaton Potential Terms, Scale-Dependent Perturbation Spectra and Chaotic Initial Conditions

    Full text link
    The curvaton scenario predicts an almost scale-invariant spectrum of perturbations in most inflation models. We consider the possibility that renormalisable phi^4 or Planck scale-suppressed non-renormalisable curvaton potential terms may result in an observable deviation from scale-invariance. We show that if the curvaton initially has a large amplitude and if the total number of e-foldings of inflation is less than about 300 then a running blue perturbation spectrum with an observable deviation from scale-invariance is likely. D-term inflation is considered as an example with a potentially low total number of e-foldings of inflation. A secondary role for the curvaton, in which it drives a period of chaotic inflation leading to D-term or other flat potential inflation from an initially chaotic state, is suggested.Comment: 12 pages LaTeX, minor corrections, to be published in JCA
    • 

    corecore