213 research outputs found

    Gametocytes infectiousness to mosquitoes: variable selection using random forests, and zero inflated models

    Get PDF
    Malaria control strategies aiming at reducing disease transmission intensity may impact both oocyst intensity and infection prevalence in the mosquito vector. Thus far, mathematical models failed to identify a clear relationship between Plasmodium falciparum gametocytes and their infectiousness to mosquitoes. Natural isolates of gametocytes are genetically diverse and biologically complex. Infectiousness to mosquitoes relies on multiple parameters such as density, sex-ratio, maturity, parasite genotypes and host immune factors. In this article, we investigated how density and genetic diversity of gametocytes impact on the success of transmission in the mosquito vector. We analyzed data for which the number of covariates plus attendant interactions is at least of order of the sample size, precluding usage of classical models such as general linear models. We then considered the variable importance from random forests to address the problem of selecting the most influent variables. The selected covariates were assessed in the zero inflated negative binomial model which accommodates both over-dispersion and the sources of non infected mosquitoes. We found that the most important covariates related to infection prevalence and parasite intensity are gametocyte density and multiplicity of infection

    Can field-based mosquito feeding assays be used for evaluating transmission-blocking interventions?

    No full text
    A recent meta-analysis of mosquito feeding assays to determine the Plasmodium falciparum transmission potential of naturally infected gametocyte carriers highlighted considerable variation in transmission efficiency between assay methodologies and between laboratories. This begs the question as to whether mosquito feeding assays should be used for the evaluation of transmission-reducing interventions in the field and whether these field-based mosquito assays are currently standardized sufficiently to enable accurate evaluations. Here, we address biological and methodological reasons for the observed variations, discuss whether these preclude the use of field-based mosquito feeding assays in field evaluations of transmission-blocking interventions, and propose how we can maximize the precision of estimates. Altogether, we underscore the significant advantages of field-based mosquito feeding assays in basic malaria research and field trials

    Cancer incidence in the AGRICAN cohort study (2005-2011).

    Get PDF
    BACKGROUND: Numerous studies have been conducted among farmers, but very few of them have involved large prospective cohorts, and few have included a significant proportion of women and farm workers. Our aim was to compare cancer incidence in the cohort (overall, by sex, and by work on farm, occupational status and pesticide use) within the general population. METHODS: More than 180,000 participants in the AGRICAN cohort were matched to cancer registries to identify cancer cases diagnosed from enrolment (2005-2007) to 31st December 2011. We calculated standardized incidence ratios (SIRs) and 95% confidence intervals (95%CIs). RESULTS: Over the period, 11,067 incident cancer cases were identified (7304 men and 3763 women). Overall cancer incidence did not differ between the cohort and the general population. Moreover, SIRs were significantly higher for prostate cancer (SIR=1.07, 95%CI 1.03-1.11) and non-Hodgkin lymphoma (SIR=1.09, 95%CI 1.01-1.18) among men, skin melanoma among women (SIR=1.23, 95%CI 1.05-1.43) and multiple myeloma (men: SIR=1.38, 95%CI 1.18-1.62; women: SIR=1.26, 95%CI 1.02-1.54). In contrast, SIRs were lower for upper aerodigestive tract and respiratory cancers. Increase in risk was greater in male farm workers for prostate and lip cancer, in female farm workers for skin melanoma, and in male farm owners for multiple myeloma. Moreover, incidence of multiple myeloma and skin melanoma was higher among male and female pesticide users respectively. CONCLUSION: We found a decreased incidence for tobacco-related cancers and an increased incidence of prostate cancers, skin melanoma and multiple myeloma. Specific subgroups had a higher cancer incidence related to occupational status and pesticide use

    Variation in susceptibility of African Plasmodium falciparum malaria parasites to TEP1 mediated killing in Anopheles gambiae mosquitoes

    Get PDF
    Anopheles gambiae s.s. mosquitoes are efficient vectors for Plasmodium falciparum, although variation exists in their susceptibility to infection. This variation depends partly on the thioester-containing protein 1 (TEP1) and TEP depletion results in significantly elevated numbers of oocysts in susceptible and resistant mosquitoes. Polymorphism in the Plasmodium gene coding for the surface protein Pfs47 modulates resistance of some parasite laboratory strains to TEP1-mediated killing. Here, we examined resistance of P. falciparum isolates of African origin (NF54, NF165 and NF166) to TEP1-mediated killing in a susceptible Ngousso and a refractory L3-5 strain of A. gambiae. All parasite clones successfully developed in susceptible mosquitoes with limited evidence for an impact of TEP1 on transmission efficiency. In contrast, NF166 and NF165 oocyst densities were strongly reduced in refractory mosquitoes and TEP1 silencing significantly increased oocyst densities. Our results reveal differences between African P. falciparum strains in their capacity to evade TEP1-mediated killing in resistant mosquitoes. There was no significant correlation between Pfs47 genotype and resistance of a given P. falciparum isolate for TEP1 killing. These data suggest that polymorphisms in this locus are not the sole mediators of immune evasion of African malaria parasites

    Gametocytes infectiousness to mosquitoes: variable selection using random forests, and zero inflated models

    Get PDF
    Malaria control strategies aiming at reducing disease transmission intensity may impact both oocyst intensity and infection prevalence in the mosquito vector. Thus far, mathematical models failed to identify a clear relationship between Plasmodium falciparum gametocytes and their infectiousness to mosquitoes. Natural isolates of gametocytes are genetically diverse and biologically complex. Infectiousness to mosquitoes relies on multiple parameters such as density, sex-ratio, maturity, parasite genotypes and host immune factors. In this article, we investigated how density and genetic diversity of gametocytes impact on the success of transmission in the mosquito vector. We analyzed data for which the number of covariates plus attendant interactions is at least of order of the sample size, precluding usage of classical models such as general linear models. We then considered the variable importance from random forests to address the problem of selecting the most influent variables. The selected covariates were assessed in the zero inflated negative binomial model which accommodates both over-dispersion and the sources of non infected mosquitoes. We found that the most important covariates related to infection prevalence and parasite intensity are gametocyte density and multiplicity of infection

    Anopheles gambiae salivary protein expression modulated by wild Plasmodium falciparum infection: Highlighting of new antigenic peptides as candidates of An. gambiae bites

    Get PDF
    Background: Malaria is the major parasitic disease worldwide caused by Plasmodium infection. The objective of integrated malaria control programs is to decrease malaria transmission, which needs specific tools to be accurately assessed. In areas where the transmission is low or has been substantially reduced, new complementary tools have to be developed to improve surveillance. A recent approach, based on the human antibody response to Anopheles salivary proteins, has been shown to be efficient in evaluating human exposure to Anopheles bites. The aim of the present study was to identify new An. gambiae salivary proteins as potential candidate biomarkers of human exposure to P. falciparum-infective bites. Methods: Experimental infections of An. gambiae by wild P. falciparum were carried out in semi-field conditions. Then a proteomic approach, combining 2D-DIGE and mass spectrometry, was used to identify the overexpressed salivary proteins in infected salivary glands compared to uninfected An. gambiae controls. Subsequently, a peptide design of each potential candidate was performed in silico and their antigenicity was tested by an epitope-mapping technique using blood from individuals exposed to Anopheles bites. Results: Five salivary proteins (gSG6, gSG1b, TRIO, SG5 and long form D7) were overexpressed in the infected salivary glands. Eighteen peptides were designed from these proteins and were found antigenic in children exposed to the Anopheles bites. Moreover, the results showed that the presence of wild P. falciparum in salivary glands modulates the expression of several salivary proteins and also appeared to induce post-translational modifications. Conclusions: This study is, to our knowledge, the first that compares the sialome of An. gambiae both infected and not infected by wild P. falciparum, making it possible to mimic the natural conditions of infection. This is a first step toward a better understanding of the close interactions between the parasite and the salivary gland of mosquitoes. In addition, these results open the way to define biomarkers of infective bites of Anopheles, which could, in the future, improve the estimation of malaria transmission and the evaluation of malaria vector control tools. (Résumé d'auteur

    Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity

    Get PDF
    Infection with Plasmodium can elicit antibodies that inhibit parasite survival in the mosquito, when they are ingested in an infectious blood meal. Here, we determine the transmission-reducing activity (TRA) of naturally acquired antibodies from 648 malaria-exposed individuals using lab-based mosquito-feeding assays. Transmission inhibition is significantly associated with antibody responses to Pfs48/45, Pfs230, and to 43 novel gametocyte proteins assessed by protein microarray. In field-based mosquito-feeding assays the likelihood and rate of mosquito infection are significantly lower for individuals reactive to Pfs48/45, Pfs230 or to combinations of the novel TRA-associated proteins. We also show that naturally acquired purified antibodies against key transmission-blocking epitopes of Pfs48/45 and Pfs230 are mechanistically involved in TRA, whereas sera depleted of these antibodies retain high-level, complement-independent TRA. Our analysis demonstrates that host antibody responses to gametocyte proteins are associated with reduced malaria transmission efficiency from humans to mosquitoes

    Midgut microbiota of the malaria mosquito vector Anopheles gambiae and Interactions with plasmodium falciparum Infection

    Get PDF
    The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.Institut de Recherche pour le Developpement (IRD); French Agence Nationale pour la Recherche [ANR-11-BSV7-009-01]; European Community [242095, 223601]info:eu-repo/semantics/publishedVersio

    SNP discovery and molecular evolution in Anopheles gambiae, with special emphasis on innate immune system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles </it>innate immunity affects <it>Plasmodium </it>development and is a potential target of innovative malaria control strategies. The extent and distribution of nucleotide diversity in immunity genes might provide insights into the evolutionary forces that condition pathogen-vector interactions. The discovery of polymorphisms is an essential step towards association studies of susceptibility to infection.</p> <p>Results</p> <p>We sequenced coding fragments of 72 immune related genes in natural populations of <it>Anopheles gambiae </it>and of 37 randomly chosen genes to provide a background measure of genetic diversity across the genome. Mean nucleotide diversity (π) was 0.0092 in the <it>A. gambiae </it>S form, 0.0076 in the M form and 0.0064 in <it>A. arabiensis</it>. Within each species, no statistically significant differences in mean nucleotide diversity were detected between immune related and non immune related genes. Strong purifying selection was detected in genes of both categories, presumably reflecting strong functional constraints.</p> <p>Conclusion</p> <p>Our results suggest similar patterns and rates of molecular evolution in immune and non-immune genes in <it>A. gambiae</it>. The 3,214 Single Nucleotide Polymorphisms (SNPs) that we identified are the first large set of <it>Anopheles </it>SNPs from fresh, field-collected material and are relevant markers for future phenotype-association studies.</p
    corecore