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Abstract:

Malaria control strategies aiming at reducing disease transmission inten-
sity may impact both oocyst intensity and infection prevalence in the mosquito
vector. Thus far, mathematical models failed to identify a clear relationship
between Plasmodium gametocytes and their infectiousness to mosquitoes. Nat-
ural isolates of gametocytes are genetically diverse and biologically complex.
Infectiousness to mosquitoes relies on multiple parameters such as density, sex-
ratio, maturity, parasite genotypes and host immune factors. In this article,
we investigated how density and genetic diversity of gametocytes impact on
the success of transmission through the mosquito vector. We analyzed data for
which the number of variables plus attendant interactions is at least of order
of the sample size, precluding usage of classical models such as general linear
models. We then applied a variable selection procedure based on the random
forests score of variable importance. The selected variables were assessed in the
zero inflated negative binomial model which accommodates both over-dispersion
and the sources of non infected mosquitoes. We found that the most important
variables related to infection prevalence and parasite intensity are gametocyte
density and multiplicity of infection.

Key-words: Plasmodium, mosquitoes, variable selection, random

forests, zero inflated models.
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Capacité d’infection des gamétocytes aux

moustiques : sélection de variables basée sur les

forêts aléatoires, et modèles modifiés en zéro

Résumé :

De nouvelles stratégies de réduction de la transmission du paludisme nécessite
la compréhension des facteurs pouvant influencer l’intensité d’oocystes et la
prévalence d’infection chez le moustique vecteur. Jusqu’à maintenant, les modèles
mathématiques ne sont pas parvenus à identifier une relation claire entre les
gamétocytes de Plasmodium et leur capacité à infecter les moustiques. La ca-
pacité vectorielle du moustique peut dépendre de multiple facteurs tels que la
densité, le sexe-ratio et la maturité du parasite, ainsi que des facteurs immu-
nitaires du moustique. Dans ce papier, nous évaluons l’influence de la den-
sité et de la diversité génétique du parasite sur le succès de sa transmission
à travers le moustique vecteur. Nous disposons de données décrites par di-
verses variables dont le nombre est de l’ordre de la taille de l’échantillon, ce
qui constitue un obstacle à l’usage de modèles classiques de régression tel que
le modèle linéaire généralisé. Nous considérons alors l’importance des variables
des forêts aléatoires pour sélectionner les variables les plus influentes. Les vari-
ables sélectionnées sont ensuite évaluées par le modèle binomial négatif modifié
en zéro, qui permet de tenir compte à la fois de la sur-dispersion et des sources
possibles des moustiques non-infectés. Nous trouvons que les variables les plus
importantes reliées à la prévalence d’infection et l’intensité parasitaire sont la
densité de gamétocytes et la multiplicité de l’infection.

Mots-clés : Plasmodium, moustiques, sélection de variables, forêts

aléatoires, modèles modifiés en zéro.
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1 Introduction

Malaria still represents a major health problem in more than one hundred trop-
ical countries. The disease is caused by the parasite Plasmodium and its trans-
mission occurs through the bite of an infective Anopheles female mosquito. In
the last decades, insecticide and drug resistance has seriously hampered its
control and alternative measures are urgently needed. Because Plasmodium
transmission relies on the success of its development within the mosquito vec-
tor, called the sporogonic development, new strategies to fight malaria aim at
controlling Plasmodium during the mosquito life cycle. Within the mosquito
vector, malaria parasites undergo several life-stages and their successful devel-
opment from one transition stage to an other will determine the outcome of
infection. When ingested with the blood meal, male and female gametocytes
fuse to form a zygote that differentiates into a mobile ookinete. The ookinete
then traverses the midgut epithelium and encysts as an oocyst along the basal
lamina. The oocyst, after several days of maturation, will release large number
of sporozoites into the hemocoel. Sporozoites that will reach salivary glands will
then be transmitted to a new host at a subsequent blood meal. Plasmodium
parasites encounter severe losses during these successive phases and factors con-
trolling parasite densities are not yet completely understood. Blood digestion
processes and mosquito immune responses account for parasite decrease, but
also the complex interplay between vector and parasite genotypes (Vaughan,
2007; Jaramillo-Gutierrez et al., 2009).

Transmission of Plasmodium falciparum sexual stages, the gametocytes, to
the mosquito mainly depends on their maturity and density in the human host at
the time of the mosquito bite. Even if it has been demonstrated that high game-
tocyte densities do not guarantee high mosquito infection, a greater infection of
mosquitoes is generally observed with higher gametocyte densities (Hogh et al.,
1998; Drakeley et al., 1999; Targett et al., 2001; Boudin et al., 2004; Paul et al.,
2007; Nwakanma et al., 2008). Gametocyte densities vary greatly between hu-
man hosts, due to host acquired immunity, genetic factors of the parasite strain
and other environmental parameters (blood quality, fever, anemia, anti-malarial
drug uptake). In malaria endemic areas, human hosts are typically infected
with multiple genotypes of parasites (Day et al., 1992; Babiker et al., 1999;
Anderson et al., 2000; Nwakanma et al., 2008) and within-host competition of
parasite genotypes is likely to drive transmission success. Indeed, from ex-
periments using Plasmodium animal models, it has been shown that different
genotypes of parasites in mixed infections have distinct ability to transmit, the
more virulent strain having a competitive advantage (de Roode et al., 2005;
Bell et al., 2006; Wargo et al., 2007). If different models have been proposed
to correlate the gametocyte density to the transmission success of wild isolates
of Plasmodium falciparum (Pichon et al., 2000; Boudin et al., 2005; Paul et al.,
2007), to date no study related the outcome of infection to parasite complexity
within the gametocyte population. Understanding relationships between co-
infecting genotypes and how they influence the disease transmission is however
of great importance as these might help to predict the spread of resistant strains
of parasites and guide strategies for malaria control.

In this paper, we investigate how density and genetic diversity of gameto-
cytes impact on infectiousness to mosquitoes. We analyze mosquito infection
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4 Genuer et.al.

data consisted of oocyst counts with corresponding gametocyte data: densities
and genotypes at 7 microsatellite loci. Data were obtained from experiments
of membrane feeding of a local colony of Anopheles gambiae mosquitoes on
blood from volunteers naturally infected by Plasmodium falciparum isolates
from Cameroon. Gametocyte genotypes are occurrences of several unordered
categorical variables, each having numerous levels. Therefore the number of
variables plus attendant interactions is at least of order of the sample size. We
considered as response variables: the intensity of infection as measured by the
mean of oocyst counts in infected mosquitoes, and the infection prevalence de-
fined by the proportion of mosquitoes that became infected. The high number
of variables in our data set will obviously lead to over-fitting of many familiar
regression techniques such as general linear model (GLM). In addition, we deal
with unordered categorical variables with several levels and potentially accom-
panying interactions. Therefore, following Segal et al. (2001), we use regression
trees techniques.

We address the problem of selecting the most influent variables related to
the response variable by applying a variable selection procedure, which comes
from Genuer et al. (2010), and is based on variable importance from random
forests (Breiman, 2001). The resulting method is completely non-parametric
and thus can be used on data with a large number of variables of various types.
Moreover, it solves the two following constraints about variable selection: 1) to
find all variables highly related to the response variable; and 2) to find a small
number of variables sufficient for a good prediction of the response variable. The
selected variables are then assessed in a modeling for oocyst count which takes
into account the complexity of the experiment we deal with. The key point of
our modeling is the introduction of a new unobserved variable that enables to
distinguish two possible sources of non infected mosquitoes. Indeed, the het-
erogeneity in the quantity and quality of gametocytes in blood-meal (Vaughan,
2007), and natural variation in mosquito susceptibility (Riehle et al., 2006) are
well known phenomena. We then suggest here that mosquitoes with no oocyst
can be non infected either because they did not ingest enough gametocytes with
the blood-meal, or because they were refractory to the ingested parasites. We
fitted a Zero-Inflated (ZI) model, which is a two components mixture model
combining a point mass at zero with a proper count model. Since we deal
with count data, the typical candidate models were Zero-Inflated Poisson (ZIP)
and Zero-Inflated Negative Binomial (ZINB); ZINB having a slight advantage
because it captures over-dispersion which is likely to appear in such data.

As a result, we found that the gametocyte density and the multiplicity of
infection were the most influent variables for both infection prevalence and para-
site intensity. High gametocyte density and low multiplicity of infection resulted
in high parasite intensity, whereas high infection prevalence came from high ga-
metocyte density and high multiplicity of infection.

The rest of the paper is organized as follows. Section 2 presents the data
to be analyzed in Subsection 2.1, the principle of variable selection based on
variable importance from random forests in Subsection 2.2, and the modeling of
oocyst count in Subsection 2.3. Section 3 is devoted to the application of these
methods on our data. Finally a discussion is given in Section 4.

INRIA
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Figure 1: Alleles detected for the 7 microsatellite loci and their frequencies in
Plasmodium falciparum gametocyte carriers.

2 Material and methods

2.1 Data collection and description

The data we considered consist of parasite densities and genotypes at 7 mi-
crosatellite loci for gametocyte isolates of Plasmodium falciparum on one hand,
and oocyst counts 7 days post feeding for each engorged females on the other
hand. Plasmodium falciparum gametocyte carriers were identified among asymp-
tomatic children aged from 5 to 11 in primary schools of the locality of Mfou,
a small town located 30 km apart from Yaounde, the Cameroon capital city.
Volunteers were enrolled upon signature of an informed consent form by their
parents or legal guardian. The protocol was approved by the National Ethics
Committee of Cameroon. Gametocyte densities were expressed as the num-
ber of parasites seen against 1 000 leukocytes in a fresh thick blood smear,
assuming a standard concentration of 8 000 leukocytes per µl (see Table 1 for
summary of log-transformed gametocyte densities). Venous blood (2 to 3 mL)

RR n° 7497



6 Genuer et.al.

was taken from consenting gametocyte carriers, centrifuged and the serum re-
placed by a non-immune AB serum. This procedure avoids the introduction of
human transmission blocking factors in the experiment. 3 to 5 old females of a
laboratory strain of Anopheles gambiae mosquito were used for the membrane
feeding assays placed in cups of approximately 60-80 mosquitoes. Females were
allowed to feed for 20 minutes through a Parafilm membrane on glass feed-
ers maintained at 37◦C and fully engorged females were kept in insectar until
dissections 7 days post-infection. Midguts were removed, stained in a 0.4%
Mercurochrome solution and the number of developed oocysts counted by light
microscopy (X20 lens). A total of 7 364 mosquitoes (see Table 1) were dissected,
giving a mean of 39 females per experiment.

Gametocytes were separated from 1 mL of serum free blood using MACSr
columns as previously described (Ribaut et al., 2008). DNA extractions from
purified gametocytes were performed with DNAzolr and 20 ng of gameto-
cyte DNA were subjected to whole-genome amplification (WGA) using the
GenomiPhi V2 DNA Amplification Kit to generate sufficient amounts of DNA
for microsatellite genotyping. Genetic polymorphism was assessed at 7 mi-
crosatellite loci as previously described (Annan et al., 2007). Their chromo-
some location and GenBank accession number are as follows: POLYa (chr. 4,
G37809), TA60 (chr. 13, G38876), ARA2 (chr. 11, G37848), Pfg377 (chr. 12,
G37851), PfPK2 (chr. 12, G37852), TA87 (chr. 6, G38838), and TA109 (chr.6,
G38842). Alleles were analyzed using GeneMapper® software. Multiple alleles
were scored when minor peaks were at least 20% of the height of the predomi-
nant allele. The number of observed alleles per locus is 21, 9, 10, 5, 15, 10 and
17 respectively (see Figure 1).

Table 1: Summary of the numbers of mosquitoes per isolate (N) and log-
transformed of gametocyte densities (log gameto).

Min. 1st Qu. Median Mean 3rd Qu. Max.
N 11.000 29.000 38.000 39.380 47.000 79.000

log gameto 1.816 3.156 3.832 3.973 4.612 7.742

Feedings for which the number of dissected mosquitoes was below 20 were
not considered. Then 110 experiments were included in the analysis.

2.2 Variable selection procedure

The selection procedure we considered is based on variable importances (VI)
from random forests (RF). The principle of RF is to aggregate regression or
classification trees built on several bootstrap samples drawn from the learning
set (more details are given in Appendix A). It is shown to exhibit very good
performance for lots of diverse applied situations (Breiman, 2001). Moreover,
it computes a variable importance index, defined in Appendix A. Roughly, this
index is a measure of the degradation of forest predictions when values of a
variable are permuted.

RF variable importance is the key point of the selection procedure (see
Genuer et al. (2010) for more backgrounds on RF variable importance). This
procedure presents two main benefits. First the method is completely non-
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parametric and can be applied on data with lots of variables of various types.
Second, it achieves two main variable selection objectives: (1) to magnify all
the variables related to the response variable, even with high redundancy, for
interpretation purpose; (2) to find a parsimonious set of variables sufficient for
prediction of the outcome variable.

Let us now describe the procedure, which comes from Genuer et al. (2010),
with the following algorithm. The R package randomForest (Liaw and Wiener,
2002; R Development, 2009) was used in all computations.

To both illustrate and give details about this procedure, we apply it on
a simulated dataset with n = 200 observations described by 25 continuous
variables and 25 binary variables. We assume standard normal distribution
N (0, 1) for all continuous variables and binomial distribution B (0.5) for all
binary variables. We consider the following linear model

Y =

25∑

j=1

βcjXcj +

25∑

j=1

βbjXbj

in which only 8 over a total of p = 50 variables are related to the outcome,
the others being just noise. The set of significant variables is composed by the
first 4 continuous variables

(
Xcj

)
1≤j≤4

and the first 4 binary ones
(
Xbj

)
1≤j≤4

.

Their associated coefficients are given by

(βcj )1≤j≤25 = (βbj )1≤j≤25 = (4, 4, 2, 2, 0, . . . , 0).

We also assume a 0.9 correlation between Xc1 and Xc2 , Xc3 and Xc4 , Xb1 and
Xb2 , and Xb3 and Xb4 .

The selection process uses a certain number nfor of random forests. In
addition of this number, the user has also to provide the number ntree of trees in
each random forest, and the number mtry of variables among which to select the
best split at each node. The default parameters in the R package randomForest
we used are mtry = p/3, ntree = 500. In our example, we choose the following
parameters: mtry = p/3, and we choose nfor = 50 and ntree = 1000 to increase
the VI stability. The results are summarized in Figure 2.

Let us detail the main stages of the procedure together with, in italics, the
results obtained on simulated data. In the following, out of bag (OOB) error
refers to an estimation of the prediction error (which is defined in Appendix A
and is close to a cross-validation estimate).

• Elimination step

First the variables are sorted in descending order according to VI (averaged
from the nfor runs).

The result is drawn on the top left graph. The 8 variables of interest arrive
in the first 8 positions of the ranking.

Keeping this order in mind, the corresponding standard deviations of VI
are plotted. A threshold for importance is computed using this graph.
More precisely, the threshold is set as the minimum prediction value given
by a Classification And Regression Tree (CART) model fitting this curve
(for details about CART, see Breiman et al. (1984)). Then only variables
with an averaged VI exceeding this level are kept. This rule is, in general,
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8 Genuer et.al.
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Figure 2: Variable selection procedures for interpretation and prediction for
simulated data

conservative and leads to retain more variables than necessary, in order to
make a careful choice later.

The standard deviations of VI can be found in the top right graph. We can
see that true variables standard deviation is large compared to the noisy
variables one, which is very close to zero. The threshold leads to retain
pelim = 14 variables. Note that the threshold value is based on VI standard
deviations (top right panel of Figure 2) while the effective thresholding is
performed on VI mean (top left panel of Figure 2).

• Interpretation step

Then, OOB error rates (averaged on nfor runs and using default param-
eters) of the nested random forests models are computed; starting from
the one with only the most important variable, and ending with the one
involving all important variables kept previously. The set of variables
leading to the smallest OOB error is selected.

Note that in the bottom left graph the error decreases and reaches its min-
imum when the first pinterp = 9 variables are included in the model. This
set of selected variables for interpretation contains the 8 true variables
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Gametocytes infectiousness to mosquitoes using random forests 9

plus one noisy one. Note that the associated error is closed to the one
of the model with the 6 first variables (see bottom left panel of Figure 2)
suggesting that a smaller model should be preferred for prediction purposes.

• Prediction step

Finally a sequential variable introduction with testing is performed: a
variable is added only if the error gain exceeds a data-driven threshold.
The rationale is that the error decrease must be significantly greater than
the average variation obtained by adding noisy variables.

The bottom right graph shows the result of this step, the final model for
prediction purpose involves 6 out of the 8 true variables. It is of interest
that each of the two true variables non-selected is correlated to one selected
variable. The threshold is set to twice the mean of the absolute values of
the first order differentiated OOB errors between the model with pinterp =
9 variables (the model we selected for interpretation, see the bottom left
graph) and the one with all the pelim = 14 variables :

avejump =
1

pelim − pinterp

pelim−1∑

j=pinterp

| errOOB(j + 1)− errOOB(j) |

where errOOB(j) is the OOB error of the RF built using the j most
important variables.

Since the number of variables after the variable elimination step is small (14),
we tried some variants more computationally expensive, in order to validate the
two last steps of the algorithm. Instead of the interpretation step, we launch a
forward procedure. The principle is, at each time, to seek the best variable (in
terms of OOB error rate, averaged on nfor runs and using default parameters)
to add in the current variable set. The set of variables leading to the smallest
OOB error is then selected.

For our example, it leads, as the interpretation step, to retain the 8 true
variables plus one noisy variable (this last noisy variable being different from
the one selected by interpretation step). We remark however that the initial
ranking according to VI is quite changed with this procedure.

To validate the prediction step, we tried an exhaustive procedure, i.e. we
compute the OOB error rate (averaged on nfor runs and using default parame-
ters) for all models formed with the variables selected by the forward procedure.
The set of variables leading to the smallest OOB error is then selected.

This procedure selects all 9 variables selected previously.

This validates the interpretation and the prediction step of our algorithm,
since the variables sets in these variants are close to ours. In addition the errors
reached by the two procedures are comparable. However this comparison was
done on the easy simulated dataset we considered in this section.

2.3 Modeling oocyst count with Zero-Inflated models

The key point of our modeling is to consider that there are two possible sources
of non-infected mosquitoes. First, some mosquitoes may not ingest enough para-
sites with sufficient sex-ratio to ensure fertilization. The reason is seemingly the
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10 Genuer et.al.

high heterogeneity in the number of gametocytes in blood-meals (Pichon et al.,
2000). Second, some other mosquitoes may not be genetically susceptible to the
parasites ingested (Riehle et al., 2006). We introduce a new variable U materi-
alizing this situation of non-infected mosquitoes: for mosquito j fed with blood
coming from gametocytes carrier i,

Ui,j =

{
1 if enough parasites are present in its blood-meal
0 otherwise.

Ui,j is an unobserved variable in our experiment. We assume that for a given
i, Ui,1, . . . , Ui,ni

are independent and identically distributed. Here ni is the
number of mosquitoes associated to gametocytes carrier i. For any gametocytes
carrier i, denote by

πi := P (Ui,j = 0)

the probability that mosquito j does not ingest enough gametocytes in its blood-
meal. Let Yi,j be the number of oocysts developed in mosquito j associated to
gametocytes carrier i. The probability distribution of Yi,j is given by

P (Yi,j = yi,j) = πi1(yi,j=0) + (1− πi)P (Yi,j = yi,j | Ui,j = 1) , (1)

where P (Yi,j = yi,j | Ui,j = 1) is a suitable count probability distribution.
Consequently, for any gametocytes carrier i, the zero class is a mixture of

two components with πi and 1 − πi as the mixture proportions. The resulting
model of probability distribution is known as a zero-inflated count model. Such
a model is a two components mixture model combining a point mass at zero
with a count distribution such as Poisson, geometric or negative binomial (see
Zeileis and Jackman (2008) and references therein). Thus there are two sources
of zeros: zeros may come from point mass or from count component. In our
framework, the zeros coming from the point mass are assumed to represent
mosquitoes which did not ingest enough gametocytes to produce an infection.

Let λi := E (Yi,j | Ui,j = 1) be the conditional mean of the count component.
In the regression setting, both the mean λi and the excess zero proportion πi

are related to covariates vectors xi = (xi,1, . . . , xi,p) and zi = (zi,1, . . . , zi,q),
respectively. The components of these covariates are typically the observations
of the previously selected variables. They contain gametocyte density and /
or their genetic profile. We consider canonical link functions log and logit for
the mean of count component and the point mass component respectively. The
corresponding regression equations are





λi = exp (β0 + β1xi,1 + . . .+ βpxi,p)

πi =
exp (γ0 + γ1zi,1 + . . .+ γpzi,q)

1 + exp (γ0 + γ1zi,1 + . . .+ γpzi,q)
,

where β := (β0, . . . , βp) and γ := (γ0, . . . , γq) are the parameters to be esti-
mated. Note that different sets of regressors can be specified for the zero inflated
component and count component. In the simplest case, only an intercept is used
for modeling the unobserved state (zero vs. count).

Typical candidate of zero-inflated models for count data are zero inflated
Poisson (ZIP) and zero-inflated negative binomial (ZINB) (see Xiang et al. (2007)
and references therein). ZINB and ZIP specifications are given in Appendix B.
For the estimation of the parameters of these models, we used the package named
pscl (Zeileis and Jackman, 2008) in R statistical software (R Development,
2009).

INRIA



Gametocytes infectiousness to mosquitoes using random forests 11

3 Application on the real data

3.1 Variable selection

Here, the results are given following the main stages of the selection procedure
given in Subsection 2.2. The details are given once, in the case where the re-
sponse variable is the infection prevalence of mosquitoes measured by proportion
of infected mosquitoes. We will just give the selected variables at each stage
in the other case where the response variable is the mean number of oocysts
per infected mosquitoes. In these results, the binary variables associated to the
observed alleles are coded as locus allele. For example, Pfg377 093 is allele
093 at locus Pfg377. In addition to the log-transformed of gametocytes den-
sity (log gameto), we also consider the multiplicity of infection (MOI) defined as
the maximum number of the observed alleles across the considered microsatellite
loci.
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Figure 3: Variable selection for interpretation and prediction. The response
variable is the infection prevalence measured by the proportion of infected
mosquitoes.

Here are the main stages of the procedure.

• Elimination Step
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Figure 4: Variable selection for interpretation and prediction. The response
variable is the mean number in infected mosquitoes.

– The top left panel in Figure 3 gives the VI mean of all the 88 variables
sorted in decreasing order.

– The top right panel of Figure 3 plots the standard deviations of VI
and the fitted CART model. The threshold minCART represented by
the horizontal dashed line leads to retain pelim = 36 variables over
88.

• Interpretation Step

This step is illustrated in the bottom left panel of Figure 3 in which
the minimum OOB error rate is reached with pinterp = 11 variables for
interpretation:

Sinterp = {log gameto, Pfg377 093, PfPK2 180, MOI,

Pfg377 102, PfPK2 183, Pfg377 099, TA60 071,

PfPK2 169, PfPK2 166, POLY a 135}.

• Prediction Step

The bottom right panel in Figure 3 shows the behavior of the OOB error
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of the nested models corresponding to the selected variables for prediction:

Spred = {log gameto, Pfg377 093, MOI, PfPK2 183}.

The 4 selected variables in Spred lead to the OOB error of 0.074. We also launch
the variant based on forward and exhaustive search of the selection procedure.
Finally it retains a set of 9 variables containing Spred. The associated OOB
error is 0.062 which is not far from 0.074. So we prefer a model with variables
in Spred which is more parsimonious.

The same procedure was applied when the outcome variable is the infection
intensity as measured by the mean number of oocysts in infected mosquitoes.
Figure 4 gives the behavior of VI and the OOB error at each stage of the selection
procedure. 25 variables were selected by thresholding the VI in the first stage,
the 2 most important being log gameto and MOI. Even if only log gameto is
selected in the interpretation and prediction stages, we also keep MOI. Indeed,
as can be seen in the bottom left graph of Figure 4, the model with these two
variables is still competitive compared with the model built with log gameto
only.

3.2 Zero-Inflated models fitting oocyst count

Zero-Inflated negative binomial (ZINB) and Poisson (ZIP) were fitted to the
data in two situations: (i) using only log-transformed of the gametocyte density
as variable, (ii) using the set of variables selected for prediction of the infection
prevalence or the infection intensity (see Subsection 3.1). The estimates of the
parameters of ZINB and ZIP models are given in Table 2 and 3.

In situation (i), it is of interest how the zero counts are captured by the two
models: they perfectly predict the observed number of non infected mosquitoes
(see the left panel of Figure 5). Also, the estimates of the mean number of
oocysts from both two models are similar (see the right panel of Figure 5). But
according to the X 2 goodness-of-fit test (X 2 = 48.162, df = 45, p.value ≥
0.3461 for ZINB against X 2 = 2964.606, df = 46, p.value = 0 for ZIP model),
ZINB model is more adapted to our data. Over-dispersion is probably the main
reason: there are more mosquitoes with no or few oocysts than the ones with
high oocyst loads. ZIP model underestimates the number of mosquitoes with
lower oocyst loads (see the left panel of Figure 5). We then consider the ZINB
model in the rest of the analysis.

In situation (ii), since the data are over-dispersed, only ZINB is considered.
The selected variables in the prediction step of our variable selection process
using the infection prevalence as response variable are used in point mass com-
ponent, and the ones using the infection intensity as response variable are used
in the count component. Recall that the infection prevalence is measured by
the proportion of mosquitoes that became infected, and the infection intensity
by the mean number of oocysts in infected mosquitoes. It is natural to link
infection prevalence and infection intensity to zero and count components re-
spectively. We found that allele PfPK2 183 is the only variable not significant
(Z = −0.8329, p.value ≥ 0.40). In contrary, gametocyte density log gameto,
gametocyte genetic complexity MOI and allele 093 of locus Pfg377 signifi-
cantly influence the mean oocyst load in mosquitoes in count component. The
significance of the gametocyte density confirms the result obtained by ZINB
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model in situation (i). The significance of the effect of MOI in both zero and
count components is very interesting: it is more important in the zero compo-
nent (t-test Z = −4.5711, p.value < 4.9e − 06) than in the count one (t-test
Z = −2.1058, p.value < 3.5e − 02). Also note that the correlation is negative

in both two components (β̂MOI = −0.0333 and γ̂MOI = −0.1499 in count and
zero components respectively). So mono infected gametocyte isolates increase
the probability that a mosquito do not ingest enough parasites to ensure the
transmission success of Plasmodium through its vector mosquito. Hence, low
values of MOI tend to decrease the infection prevalence. In contrary, a lower
genetic diversity of gametocytes in an isolate increases the mean number of
oocysts in the count component. Also note that the presence of allele 093 of
the genetic marker Pfg377 increases the proportion of non-infected mosquitoes
(γ̂Pfg377 093 = 1.2242, SE = 0.1204; t-test Z = 10.177, p− value < 2.7e− 24).

Table 2: Maximum likelihood estimates of the parameters of ZINB and ZIP
models using only log gameto as variable for both zero and count components.
Significant codes: 0 ’***’; 0.001 ’**’; 0.01 ’*’; 0.05 ’.’; 0.1 ’ ’. X 2 Goodness-
of-fit test: X 2 = 47.0992, df = 45, p.value ≥ 0.3866 for ZINB against X 2 =
2834.848, df = 46, p.value = 0 for ZIP model

Estimate Std. Error z value Pr(>|z|)
ZINB

Count (Intercept) -1.3021 0.1163 -11.1985 4.1E-29 ***
log gameto 0.8402 0.0257 32.6835 2.7E-234 ***
Log(theta) -0.5693 0.0557 -10.2235 1.6E-24 ***

Zero (Intercept) 0.0029 0.2405 0.0119 9.9E-01
log gameto -0.2618 0.0531 -4.9294 8.2E-07 ***

ZIP

Count (Intercept) -0.7941 0.0199 -40.0016 0.0E+00 ***
log gameto 0.7717 0.0036 213.9455 0.0E+00 ***

zero (Intercept) 1.4508 0.1284 11.2996 1.3E-29 ***
log gameto -0.4383 0.0316 -13.8930 7.0E-44 ***

4 Discussion

Plasmodium development within its vector mosquito follows complex biological
processes and factors controlling parasite dynamics are not well understood. In
the rodent malaria parasite Plasmodium berghei, it has been previously shown
that the efficiency of parasite transmission from one developmental stage to
another followed density-dependent models and the best fitted mathematical
model differed from one developmental transition to the other one (Sinden et al.,
2007). For natural populations of Plasmodium falciparum, the human malaria
parasite, modeling becomes more challenging because of unknown genetic factors
and uncontrolled environmental parameters. Nonetheless, Paul et al. (2007)
found a sigmoid relationship between Plasmodium falciparum gametocyte den-
sity and mosquito transmission and the authors argued that parasite aggregation
within mosquitoes represents an adaptive mechanism for transmission efficiency.
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Table 3: Maximum likelihood estimates of the parameters of ZINB and
ZIP models using {log gameto, Pfg377 093, MOI, PfPK2 183} and
{log gameto, MOI} as variables in the zero and count components respectively.
Significant codes: 0 ’***’; 0.001 ’**’; 0.01 ’*’; 0.05 ’.’; 0.1 ’ ’.

Estimate Std. Error z value Pr(>|z|)

ZINB

Count (Intercept) -0.9985 0.1436 -6.9539 3.6E-12 ***
log gameto 0.8009 0.0261 30.6432 3.3E-206 ***

MOI -0.0333 0.0158 -2.1058 3.5E-02 *
Log(theta) -0.5210 0.0500 -10.4296 1.8E-25 ***

Zero (Intercept) 0.9651 0.2679 3.6030 3.1E-04 ***
log gameto -0.3769 0.0534 -7.0615 1.6E-12 ***
Pfg377 093 1.2242 0.1204 10.1717 2.7E-24 ***

MOI -0.1499 0.0328 -4.5711 4.9E-06 ***
PfPK2 183 -4.5225 5.4301 -0.8329 4.0E-01
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Figure 5: The right panel gives observed and predicted frequencies from ZINB
and ZIP models, and the right one the empirical and predicted mean number
of oocysts versus log-gametocytemia.

The great variability in Plasmodium falciparum oocyst numbers observed in nat-
ural Anopheles gambiae populations suggests that parasite transmission is the
result of complex interactions between vectors and parasites, which rely on both
genetic and environmental factors. Understanding factors that determine trans-
mission intensity and then parasite population structure is of crucial importance
in predicting the impact of current malaria control strategies.

In this study, we analyzed patterns of mosquito infection from experiments
performed with field isolates of Plasmodium falciparum from Cameroon, an area
of high malaria endemicity. We considered as response variables: the intensity of
infection as measured by the mean of oocyst counts in infected mosquitoes, and
the infection prevalence defined by the proportion of mosquitoes that became in-
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fected. Gametocyte isolates were genetically characterized at seven microsatel-
lite loci, allowing estimation of the number of co-infecting parasite clones, the
MOI, and of the genetic polymorphism, given by the number of alleles at each
locus. In such a situation with potentially a high number of unordered cat-
egorical variables with numerous levels and accompanying interactions, many
familiar statistical techniques such as GLM over-fit the data. Then we had to
face the problem of selecting the most important variables related to the out-
come variables. We have addressed this issue with a selection procedure based
on variable importance from random forests. The procedure has two main ben-
efits. First, it is completely non-parametric and thus can be used on data with
lots of variables of various types. Second, it answers the two distinct objectives
about variable selection: (1) to find all variables related to the outcome variable
and (2) to find a small number of variables sufficient for a good prediction of
the outcome variable.

Recall that we are in a critical situation with the number of variables of
the order of the sample size (n = 110). The application of the variable se-
lection procedure on our data revealed that only 4 among the 88 variables we
considered suffice to predict the infectiousness of Plasmodium falciparum to
Anopheles gambiae in our experimental settings. The procedure indicates that
the log-transformed of gametocyte density is the most influent variable and is
positively correlated for both infection prevalence and infection intensity. This
probably reflects that Plasmodium parasites have developed complex and diverse
strategies to ensure their transmission through the mosquito vector. The fact
that higher oocyst counts are found for higher gametocyte densities conforms
to previous observations showing that infectiousness generally increases with
gametocytemia. Interestingly, Paul et al. (2007) described upper gametocyte
densities at which mosquito infection rates level off, which is consistent with our
results. In their models, mosquitoes with no oocyst were treated as non infected
without further consideration about the putative factors responsible of the non
infected status. However, a mosquito population fed on the same gametocyte
carrier results in individuals carrying high number of parasites while others do
not have any. Failure to infection of a mosquito can result from various factors
such the heterogeneity of gametocyte environment (Vaughan, 2007) and natu-
ral variation in mosquito susceptibility in the other hand (Riehle et al., 2006).
We have described in this article an approach based on that the non-infected
mosquitoes represent two distinct populations: one genetically refractory vector
population and another population for which the no-oocyst status results from
other biological or interacting factors. Further study to quantify the gametocyte
uptake in mosquitoes fed on a single carrier would help to determine the individ-
ual variation of gametocyte density between blood-meals, and thus the real part
of mosquitoes that are refractory and those that did not develop any oocyst be-
cause of other environmental factors. Nonetheless, our model perfectly predicts
the number of non infected mosquitoes. Our fitting models revealed that over-
dispersion of oocysts affects mosquito infection intensity. In addition, a higher
over-dispersion of oocysts is observed for mosquitoes fed on blood with high
gametocyte density (over 90 gametocytes/µl). The over-dispersed distribution
of oocysts has often been explained as the result of the aggregation of game-
tocytes in the capillary blood at the time of the mosquito bite (Pichon et al.,
2000). In this study, mosquitoes were membrane fed and membrane feeding is
thought to suppress gametocyte over dispersion (Vaughan, 2007). Nonetheless,
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the fact that the maximum aggregation is found for high gametocyte densities
is indicative of aggregation of sexual stages; aggregation may occur within the
mosquito midgut after parasite intake and genetic factors from the parasites
may play a role in parasite recognition. This speculation is consistent with the
hypothesis of adaptive aggregation, where gamete aggregation would favor fer-
tilization and then increase infection intensity (Paul et al., 2007; Pichon et al.,
2000). However, this increased oocyst burden coincided with a lower infection
prevalence, possibly indicating that other factors operate in limiting mating (see
below).

In malaria endemic areas, intensive use of treatments for malaria has led to
the emergence of drug-resistant parasites. Despite their low efficacy, malaria
therapies such as chloroquine (CQ) and sulphadoxine-pyrimethamine (SP) are
still widely used in sub Saharan Africa. It has been shown that, upon treatment,
drug-resistant parasites have a selective advantage, leading to higher transmis-
sion by the vector (Hallett et al., 2004, 2006). Our samples originated from
an area with high drug pressure and volunteers carrying single parasite geno-
type may have received an early anti malarial treatment that cured them from
drug-sensitive genotypes, thus allowing an optimal growth and transmission of
a resistant genotype. However, children who received a malaria treatment in
the one month period preceding the gametocyte carriage detection were not in-
cluded in the study and genotyping of pfcrt-K76T mutation in a subset of our
gametocyte samples identified single infections both as CQ resistant or sensitive
parasite strains. This result indicates that other factors contribute to the better
transmission capacity of the mono-infected Plasmodium falciparum isolates.

We found that the Multiplicity Of Infection is negatively correlated to in-
fection intensity and positively correlated to infection prevalence (through the
count and zero components respectively in the ZINB model). This indicates
that the genetic complexity of gametocyte populations modulates the mosquito
infection outcomes in an opposite manner: while gametocyte isolates contain-
ing a single clone of Plasmodium falciparum resulted in a higher mean number
of oocysts in infected mosquitoes, gametocyte isolates with multiple genotypes
gave rise to a higher infection prevalence. These results may suggest that malaria
parasites use kin discrimination to adapt strategies allowing optimal parasite
transmission.

Our results showed that the genetic complexity of gametocyte isolates affects
the mosquito infection intensity. Mosquito infections with isolates of lower com-
plexity resulted in higher oocyst counts. This may reflects a higher virulence
of genotypes in these infections, where the gametocyte genotypes in the mono-
infected isolates could have suppressed their competitors in a prior step of the
infection, within the human host. Nonetheless, the lower infection prevalence
in mono clonal infections indicates that the higher number of oocysts arises at
the cost of a reduced ability to infect the mosquito vector population. This
could result from blood quality/quantity such as agglutinating antibodies or
anaemia. It was shown that mixed infections resulted in increased anaemia,
a possible adaptive response for sex ratio adjustment (Taylor and Read, 1998;
Paul et al., 2004). Sex allocation theory predicts that sex ratio becomes less
female-biased as clone number increases (Read et al., 1992; Paul et al., 2002;
Reece et al., 2008; Schall, 2009). Then, if parasite aggregation is an adaptive
trait to promote gamete fertilization, by contrast the highly female biased sex
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ratio in mono infected isolates will affect infection prevalence because male avail-
ability will constitute a limiting factor for mating.

Our results may have important implications for the genetic structuring of
Plasmodium falciparum populations. For Plasmodium falciparum, fertilization
of gametes can occur between genetically-identical gametes (inbreeding) or be-
tween different gametes (outbreeding). Levels of inbreeding differ from one
malaria area to another but they roughly correlate with the disease endemicity
(Anderson et al., 2000). In areas of high malaria endemicity, inbreeding levels
are generally more reduced, mostly because parasite genetic diversity is high and
multiple infections predominant. However, population genetics studies, after
genotyping of oocysts from wild mosquitoes collected in intense malaria trans-
mission areas, gave rise to conflicting results and the extent of inbreeding in nat-
ural settings remains controversial (Razakandrainibe et al., 2005; Annan et al.,
2007; Mzilahowa et al., 2007). The higher fitness of inbred parasites, as sug-
gested in this study and others (Hastings and Wedgwood-Oppenheim, 1997;
Razakandrainibe et al., 2005), could explain the departs from panmixia fre-
quently found in areas of high malaria transmission.

Finally, our results comfort the idea that malaria parasites are able to dis-
criminate the genetic complexity of their infections and to adjust accordingly
adaptive traits implicated in transmission (aggregation, sex ratio). Decipher-
ing specific processes involved in parasite recognition and competition within
the mosquito vector would help for our understanding of within host behavior
of malaria parasites. This may have important implications for future malaria
interventions strategies.
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Appendices

A Random Forests

RF estimator

The principle of random forests is to aggregate a given number ntree of
binary decision trees built on several bootstrap samples drawn from the learning
set. The bootstrap samples are obtained by uniformly drawing n samples among
the learning set with repetition. The decision trees are fully developed binary
trees and the split rule is the following.

First, the whole dataset (also called the root of the tree) is split into two
subsets of data (called two children nodes). To do that, one randomly chooses
a given number mtry of variables, and computes all the splits only for the
previously selected variables. A split is of the form {X i ≤ s}∪{X i > s}, which
means that data with the i-th variable value less than the threshold s go to the
left child node and the others to the right one. Finally the selected split is the
one minimizing the variance children nodes.

Then, one restraints to one child node, randomly chooses another set ofmtry
variables and calculates the best split. And so on, until each node is a terminal
node, i.e. it comprises less than 5 observations.

A new data item X , starting in the root of the tree, goes down the tree
following the splits and falls in a terminal node. Then the tree predicts for X ,
Ȳ the mean of response of data in this terminal node. To finally get the RF
predictor, one aggregates all the tree predictors by averaging their predictions.

RF error estimate: the OOB error

Inside the variable selection procedure, we use an estimation of the prediction
error directly computed by the RF algorithm. This is the Out Of Bag (OOB)
error and is calculated as follows. Fix one data in the learning sample, and
consider all the bootstrap samples which do not contain this data (i.e. for
which the data is “out of bag”). Now perform an aggregation only among trees
built on these bootstrap samples. After doing this for all data, compare to the
true response and get an estimation of the prediction error (which is a kind of
cross-validated error estimate).

RF variable importance

Let us now detail the computation of the RF variable importance for the
first variable X1. For each tree, one has a bootstrap sample associated with an
OOB sample. Predict the OOB data with the tree predictor. Now, randomly
permute the values of the first variable of the OOB observations, predict these
modified OOB data with the tree predictor. The variable importance of X1 is
defined as the mean increase of prediction errors after permutation. The more
the error increases, the more important the variable is (note that it can be
slightly negative, typically for irrelevant variables).

B ZIP and ZINB specifications

These two models are defined by equation (1) with the count model given by:
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• ZIP :
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