43 research outputs found
tRNAdb 2009: compilation of tRNA sequences and tRNA genes
One of the first specialized collections of nucleic acid sequences in life sciences was the ‘compilation of tRNA sequences and sequences of tRNA genes’ (http://www.trna.uni-bayreuth.de). Here, an updated and completely restructured version of this compilation is presented (http://trnadb.bioinf.uni-leipzig.de). The new database, tRNAdb, is hosted and maintained in cooperation between the universities of Leipzig, Marburg, and Strasbourg. Reimplemented as a relational database, tRNAdb will be updated periodically and is searchable in a highly flexible and user-friendly way. Currently, it contains more than 12 000 tRNA genes, classified into families according to amino acid specificity. Furthermore, the implementation of the NCBI taxonomy tree facilitates phylogeny-related queries. The database provides various services including graphical representations of tRNA secondary structures, a customizable output of aligned or un-aligned sequences with a variety of individual and combinable search criteria, as well as the construction of consensus sequences for any selected set of tRNAs
A comparative analysis of two conserved motifs in bacterial poly(A) polymerase and CCA-adding enzyme
Showing a high sequence similarity, the evolutionary closely related bacterial poly(A) polymerases (PAP) and CCA-adding enzymes catalyze quite different reactions—PAP adds poly(A) tails to RNA 3′-ends, while CCA-adding enzymes synthesize the sequence CCA at the 3′-terminus of tRNAs. Here, two highly conserved structural elements of the corresponding Escherichia coli enzymes were characterized. The first element is a set of amino acids that was identified in CCA-adding enzymes as a template region determining the enzymes' specificity for CTP and ATP. The same element is also present in PAP, where it confers ATP specificity. The second investigated region corresponds to a flexible loop in CCA-adding enzymes and is involved in the incorporation of the terminal A-residue. Although, PAP seems to carry a similar flexible region, the functional relevance of this element in PAP is not known. The presented results show that the template region has an essential function in both enzymes, while the second element is surprisingly dispensable in PAP. The data support the idea that the bacterial PAP descends from CCA-adding enzymes and still carries some of the structural elements required for CCA-addition as an evolutionary relic and is now fixed in a conformation specific for A-addition
Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression
<p>Abstract</p> <p>Background</p> <p>Cues predictive of food availability are powerful modulators of appetite as well as food-seeking and ingestive behaviors. The neurobiological underpinnings of these conditioned responses are not well understood. Monitoring regional immediate early gene expression is a method used to assess alterations in neuronal metabolism resulting from upstream intracellular and extracellular signaling. Furthermore, assessing the expression of multiple immediate early genes offers a window onto the possible sequelae of exposure to food cues, since the function of each gene differs. We used immediate early gene and proenkephalin expression as a means of assessing food cue-elicited regional activation and alterations in functional connectivity within the forebrain.</p> <p>Results</p> <p>Contextual cues associated with palatable food elicited conditioned motor activation and corticosterone release in rats. This motivational state was associated with increased transcription of the activity-regulated genes <it>homer1a</it>, <it>arc</it>, <it>zif268</it>, <it>ngfi-b </it>and c-<it>fos </it>in corticolimbic, thalamic and hypothalamic areas and of proenkephalin within striatal regions. Furthermore, the functional connectivity elicited by food cues, as assessed by an inter-regional multigene-expression correlation method, differed substantially from that elicited by neutral cues. Specifically, food cues increased cortical engagement of the striatum, and within the nucleus accumbens, shifted correlations away from the shell towards the core. Exposure to the food-associated context also induced correlated gene expression between corticostriatal networks and the basolateral amygdala, an area critical for learning and responding to the incentive value of sensory stimuli. This increased corticostriatal-amygdalar functional connectivity was absent in the control group exposed to innocuous cues.</p> <p>Conclusion</p> <p>The results implicate correlated activity between the cortex and the striatum, especially the nucleus accumbens core and the basolateral amygdala, in the generation of a conditioned motivated state that may promote excessive food intake. The upregulation of a number of genes in unique patterns within corticostriatal, thalamic, and hypothalamic networks suggests that food cues are capable of powerfully altering neuronal processing in areas mediating the integration of emotion, cognition, arousal, and the regulation of energy balance. As many of these genes play a role in plasticity, their upregulation within these circuits may also indicate the neuroanatomic and transcriptional correlates of extinction learning.</p
Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination
Long-term depression (LTD) of Purkinje cell-parallel fiber synaptic transmission is a critical determinant of normal cerebellar function. Impairment of LTD through, for example, disruption of the metabotropic glutamate receptor-IP3-calcium signaling cascade in mutant mice results in severe deficits of both synaptic transmission and cerebellar motor control. Here, we demonstrate that selective genetic deletion of the calcium-binding protein calbindin D-28k ( calbindin) from cerebellar Purkinje cells results in distinctly different cellular and behavioral alterations. These mutants display marked permanent deficits of motor coordination and sensory processing. This occurs in the absence of alterations in a form of LTD implicated in the control of behavior. Analysis of synaptically evoked calcium transients in spines and dendrites of Purkinje cells demonstrated an alteration of time course and amplitude of fast calcium transients after parallel or climbing fiber stimulation. By contrast, the delayed metabotropic glutamate receptor-mediated calcium transients were normal. Our results reveal a unique role of Purkinje cell calbindin in a specific form of motor control and suggest that rapid calcium buffering may directly control behaviorally relevant neuronal signal integration
Unbiased RNA–protein interaction screen by quantitative proteomics
Mass spectrometry (MS)-based quantitative interaction proteomics has successfully elucidated specific protein–protein, DNA–protein, and small molecule–protein interactions. Here, we developed a gel-free, sensitive, and scalable technology that addresses the important area of RNA–protein interactions. Using aptamer-tagged RNA as bait, we captured RNA-interacting proteins from stable isotope labeling by amino acids in cell culture (SILAC)-labeled mammalian cell extracts and analyzed them by high-resolution, quantitative MS. Binders specific to the RNA sequence were distinguished from background by their isotope ratios between bait and control. We demonstrated the approach by retrieving known and novel interaction partners for the HuR interaction motif, H4 stem loop, “zipcode” sequence, tRNA, and a bioinformatically-predicted RNA fold in DGCR-8/Pasha mRNA. In all experiments we unambiguously identified known interaction partners by a single affinity purification step. The 5′ region of the mRNA of DGCR-8/Pasha, a component of the microprocessor complex, specifically interacts with components of the translational machinery, suggesting that it contains an internal ribosome entry site