76 research outputs found

    Quark masses and mixings in E6 x S3 : a montecarlo approach

    Get PDF
    Recently in arXiv:hep-ph/0510321 has been proposed a GUT model for fermion masses and mixings with spontaneously broken S3 discrete flavor symmetry, where S_3 is the permutation group of three objects. The S3 breaking pattern in the quark sector is not studied and need further investigation. Since in such a model the number of free parameters is greater than the number of experimental observables, an analytical fit of all the parameters is impossible. To go forward with the model building and to deal with this problem we have used a statistical analysis. We have found that S3 is totally broken and the up-type quarks matrix is approximatively diagonal while down-type quarks matrixis not symmetric and it is parametrized by three couplings, gd, gLd and g3d. It has been found that gLd is slightly smaller than gd=1 and it is of order one, while g3d \sim l^3 where l is the Cabibbo angle. An analytical study of the dependence of Vcb and Vub from the couplings gLd and g3d is also presented.Comment: Version accepted at IJMPA, new montecarlo analysis, an analytical study, change conclusion, reference adde

    Gauge boson families in grand unified theories of fermion masses: E_6^4 x S_4

    Get PDF
    In third quantization the origin of fermion families is easy to understand: the electron field, the muon field and the tau field are identical fields in precisely the same sense as three electrons are identical and undistinguishable particles of a theory of second quantization. In both cases, the permutation of these fields or particles leaves the lagrangian invariant. One can also extend the concept of family to gauge bosons. This can be obtained through the semidirect product of the gauge group with the group of permutations of n objects. In this paper we have studied the group E_6^4 x S_4. We explain why we have chosen E_6 as fundamental gauge group factor and why we start with a model with four gauge boson/fermion families to accommodate and to fit the standard model with only three fermion families. We suggest a possible symmetry breaking pattern of E_6^4 x S_4 that could explain quark, lepton and neutrino masses and mixings.Comment: 21 pages, no figur

    Which criteria should we use to end isolation in hemodialysis patients with COVID-19?

    Get PDF
    Safe and timely discontinuation of quarantine of in-center hemodialysis (HD) patients with a previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a challenging issue for the nephrological community because current guidelines for ending isolation do not mention dialysis patients. To prevent potentially fatal outbreaks of coronavirus disease 2019 (COVID-19), a cautionary approach has been adopted by most dialysis units. The criteria for ending the isolation in the HD population generally coincide with those recommended for immunocompromised people. Thus, a test-based strategy relying on two consecutive negative reverse transcriptase-polymerase chain reaction (RT-PCR) nasopharyngeal swabs has been adopted to terminate quarantine. This strategy has the disadvantage of prolonging isolation as RT-PCR positivity does not equate to SARS-CoV-2 infectivity. Consequentially, prolonged positivity of SARS-CoV-2 results in excessive workload for the HD staff who must face an increasing number of COVID-19 patients requiring isolation. This condition leads also to serious implications for the patients and their households including work productivity loss, postponement of health-care appointments and an increased risk of COVID-19 reinfection. To counteract this problem, other diagnostic tests should be used to provide the best care to HD patients. Recent results seem to encourage the use of RT-PCR cycle threshold (Ct) values and rapid antigen tests given their better correlation with cell culture for SARS-CoV-2 than RT-PCR testing. Here, we provide an overview of the current scientific evidence on the tests used to verify the infectiousness of the virus in order to stimulate the nephrological community to adopt a streamlined and pragmatic procedure to end isolation in COVID-19 patients on HD

    A Simplest A4 Model for Tri-Bimaximal Neutrino Mixing

    Full text link
    We present a see-saw A4A_4 model for Tri-Bimaximal mixing which is based on a very economical flavour symmetry and field content and still possesses all the good features of A4A_4 models. In particular the charged lepton mass hierarchies are determined by the A4×Z4A_4\times Z_4 flavour symmetry itself without invoking a Froggatt-Nielsen U(1) symmetry. Tri-Bimaximal mixing is exact in leading order while all the mixing angles receive corrections of the same order in next-to-the-leading approximation. As a consequence the predicted value of θ13\theta_{13} is within the sensitivity of the experiments which will take data in the near future. The light neutrino spectrum, typical of A4A_4 see-saw models, with its phenomenological implications, also including leptoproduction, is studied in detail.Comment: 20 pages, 2 figure

    S3 as a flavour symmetry for quarks and leptons after the Daya Bay result on \theta 13

    Full text link
    We present a model based on the flavour group S3 X Z3 X Z6 to explain the main features of fermion masses and mixing. In particular, in the neutrino sector the breaking of the S3 symmetry is responsible for a naturally small r=\Delta m^2_sol/\Delta m^2_atm and suitable next-to-leading order corrections bring \theta 13 at the level of ~ 0.13, fully compatible with the recent Daya Bay result. In the quark sector, the model accommodates the different mass hierarchies in the up and down quark sectors as well as the Cabibbo angle and Vcb (or Vub, depending on the charge assignment of the right-handed b-quark) in the correct range.Comment: 15 pages, 3 figure

    Awaiting a cure for COVID-19: therapeutic approach in patients with different severity levels of COVID-19

    Get PDF
    COVID-19 is an unpredictable infectious disease caused by SARS-CoV-2. The development of effective anti-COVID-19 vaccines has enormously minimized the risk of severe illness in most immunocompetent patients. However, unvaccinated patients and non-re-sponders to the COVID-19 vaccine are at risk of short-and long-term consequences. In these patients, the outcome of COVID-19 relies on an interplay of multiple factors including age, immunocompetence, comorbid-ities, inflammatory response triggered by the virus as well as the virulence of SARS-CoV-2 variants. General-ly, COVID-19 is asymptomatic or mildly symptomatic in young people, but it may manifest with respiratory insufficiency requiring mechanical ventilation in cer-tain susceptible groups of patients. Furthermore, severe SARS-CoV-2 infection induces multiorgan failure syndrome by affecting liver, kidney heart and nervous system. Since December 2019, multiple drugs have been test-ed to treat COVID-19, but only a few have been prov-en effective to mitigate the course of the disease that continues to cause death and comorbidity worldwide. Current treatment of COVID-19 patients is essential-ly based on the administration of supportive oxygen therapy and the use of specific drugs such as steroids, anticoagulants, antivirals, anti-SARS-CoV-2 antibodies and immunomodulators. However, the rapid spread of new variants and the release of new data coming from the numerous ongoing clinical trials have cre-ated the conditions for maintaining a continuous up-dating of the therapeutic management of COVID-19 patients. Furthermore, we believe that a well-estab-lished therapeutic strategy along with the continu-um of medical care for all patients with COVID-19 is pivotal to improving disease outcomes and restoring healthcare care fragmentation caused by the pandem-ic. This narrative review, focusing on the therapeutic management of COVID-19 patients, aimed to provide an overview of current therapies for (i) asymptomatic or mildly/moderate symptomatic patients, (ii) hospitalized patients requiring low-flow oxygen, (iii) high-flow oxygen and (iv) mechanical ventilation

    Strong coupling, discrete symmetry and flavour

    Full text link
    We show how two principles - strong coupling and discrete symmetry - can work together to generate the flavour structure of the Standard Model. We propose that in the UV the full theory has a discrete flavour symmetry, typically only associated with tribimaximal mixing in the neutrino sector. Hierarchies in the particle masses and mixing matrices then emerge from multiple strongly coupled sectors that break this symmetry. This allows for a realistic flavour structure, even in models built around an underlying grand unified theory. We use two different techniques to understand the strongly coupled physics: confinement in N=1 supersymmetry and the AdS/CFT correspondence. Both approaches yield equivalent results and can be represented in a clear, graphical way where the flavour symmetry is realised geometrically.Comment: 31 pages, 5 figures, updated references and figure

    Large theta_13 from a model with broken L_e-L_mu-L_tau symmetry

    Full text link
    Recent data in the neutrino sector point towards a relatively large value of the reactor angle, incompatible with a vanishing theta_ 13 at about 3 sigma. In order to explain such a result, we propose a SUSY model based on the broken L_e-L_mu-L_tau symmetry, where large deviations from the symmetric limit theta_12 = pi/4, tan(theta_23) \sim O(1) and theta_13 = 0 mainly come from the charged lepton sector. We show that a description of all neutrino data is possible if the charged lepton mass matrix has a special pattern of complex matrix elements.Comment: 9 pages, 2 figures. v2: comments and references added, as published in JHE

    Prolonged RT-PCR test positivity in hemodialysis patients with COVID-19

    Get PDF
    Background: The weakened immune system of patients on hemodialysis (HD) may prolong SARS-CoV-2 infection compared to the general population. Current international guidelines recommend ending isolation in conjunction with serial testing in moderately and severely immunocompromised subjects. This study aimed to estimate SARS-CoV-2 infectivity by measuring RT-PCR test positivity in HD patients. A comparison between RT-PCR test and cycle threshold (Ct) value has been performed as a secondary endpoint. Methods: A single-center retrospective study was conducted at the University of Modena (Italy) from March 2020 to October 2022. Only patients on chronic HD therapy with COVID-19 were enrolled in the study. In our HD Center, two negative nasopharyngeal reverse transcription polymerase chain reaction (RT-PCR) results were used to end quarantine in this population. SARS-CoV-2 RT-PCR test positivity duration measured the time elapsed from a positive RT-PCR to a second negative test. Ct cut-off of 35 cycles was used to definite “high Ct value,” a condition characterized by a large number of cycles of PCR amplification to register a positive RT-PCR test. Results: During the observational period, 159 cases of SARS-CoV-2 infections were diagnosed in 151 patients. Median age was 70.1 (54.3–81.6) years and males accounted for 59.6% of the COVID-19 population. Median duration of SARS-CoV-2 RT-PCR test positivity on the nasal mucosa accounted for 30 (IQR, 21–40.5) days. Unvaccinated patients experienced significantly longer RT-PCR test positivity compared to vaccinated patients (42 [IQR,31–56] vs. 28 [IQR,20–35.7] days; p = < 0.001). The use of high Ct value, a laboratory surrogate of SARS-CoV-2 replication, anticipated a negative RT-PCR test of 9 (IQR, 6–12) days. Multivariate linear regression analysis showed that increased age (β coefficient 0.31; confidence interval [CI] 95%, 0.14—0.43; p = < 0.001) and the lack of anti-SARS-CoV-2 vaccination (β 0.49 CI95%, 11.9–22.5; p = < 0.001) were predictors of a prolonged RT-PCR positivity. Conclusions: Patients with COVID-19 on HD had prolonged RT-PCR test positivity. The adoption of “high Ct value” criteria led to a significant reduction in the duration of RT-PCR test positivity compared to the use of the classical nucleic acid amplification test. In our study, the lack of SARS-CoV-2 vaccination and older age were independently associated with a longer RT-PCR positivity

    Embedding A4 into SU(3)xU(1) flavor symmetry: Large neutrino mixing and fermion mass hierarchy in SO(10) GUT

    Get PDF
    We present a common explanation of the fermion mass hierarchy and the large lepton mixing angles in the context of a grand unified flavor and gauge theory (GUTF). Our starting point is a SU(3)xU(1) flavor symmetry and a SO(10) GUT, a basic ingredient of our theory which plays a major role is that two different breaking pattern of the flavor symmetry are at work. On one side, the dynamical breaking of SU(3)xU(1) flavor symmetry into U(2)xZ_3 explains why one family is much heavier than the others. On the other side, an explicit symmetry breaking of SU(3) into a discrete flavor symmetry leads to the observed tribimaximal mixing for the leptons. We write an explicit model where this discrete symmetry group is A4. Naturalness of the charged fermion mass hierarchy appears as a consequence of the continuous SU(3) flavor symmetry. Moreover, the same discrete A4-GUT invariant operators are the root of the large lepton mixing, small Cabibbo angle, and neutrino masses.Comment: 11 pages, uses package "axodraw", "graphicx
    • …
    corecore