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We present a common explanation of the fermion mass hierarchy and the large lepton mixing

angles in the context of a grand unified flavor and gauge theory (GUTF). Our starting point is a

(SU(3)×U(1))F flavor symmetry and a SO(10) GUT, a basic ingredient of our theory which plays

a major role is that two different breaking pattern of the flavor symmetry are at work. On one side,

the dynamical breaking of (SU(3) × U(1))F flavor symmetry into (U(2) × Z3)
F explains why one

family is much heavier than the others. On the other side, an explicit symmetry breaking of SU(3)F

into a discrete flavor symmetry leads to the observed tribimaximal mixing for the leptons. We write

an explicit model where this discrete symmetry group is A4. Naturalness of the charged fermion

mass hierarchy appears as a consequence of the continuous SU(3)F symmetry. Moreover, the same

discrete A4-GUT invariant operators are the root of the large lepton mixing, small Cabibbo angle,

and neutrino masses.

I. INTRODUCTION

Grand Unified Theory (GUT) [1, 2] are natural extensions of the Standard Model (SM) Indications toward GUT

are the tendency to unify for the gauge couplings, and the possibility to explain charge quantization and anomaly

cancellation. One of the main features of GUT is its potentiality to unify the particle representations and the

fundamental parameters in a hopefully predictive framework. SO(10) is the smallest simple Lie group for which a

single anomaly-free irreducible representation (namely the spinor 16 representation) can accommodate the entire SM

fermion content of each generation.

Flavor physics appears as new extra horizontal symmetries. After the recent experimental evidences about neutrino

physics [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], within the experimental errors, the neutrino mixing matrix is compatible

with the so called tri-bimaximal matrix [15]
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At this stage the parameters both the quark [16] and lepton [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] sectors are

known to a comparable level.

To explain at the same moment the charged fermion mass hierarchy and the lepton-quark mixing angle hierarchy is

an unsolved problem, this is the flavor puzzle. The problem of the mass hierarchy is often addressed by introducing

continuous flavor symmetries [29, 30]. On the other hand, discrete flavor symmetry such as 2-3 [31, 32, 33], S3

[34, 35, 36, 37], A4 [38, 39, 40, 41], or other symmetries [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53], where introduced

to explain large lepton mixing angles, but in that case mass hierarchy remains unexplained.

A milestone in these studies has been the discovery that mass hierarchies and mixing angles can be not directly

correlated among them in the flavor symmetry breaking [36, 54]. Fundamental steps in the realization of these ideas

are given in [38, 39]. These new ingredients allow us to escape from the no-go theorem [55] that seems to indicate
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that a maximal mixing angle θ23 can never arise in the symmetric limit of whatever flavor symmetry (global or local,

continuous or discrete), provided that such a symmetry also explains the hierarchy among the fermion masses and is

only broken by small effects, as we expect for a meaningful symmetry.

In fact, in our theory, the mass hierarchy and large mixing angle are not originated at the same step in the symmetry

breaking pattern.

Our final aim would be the construction of a grand unified SO(10)-like model where masses and mixing angles are

generated by the flavor and gauge symmetry breaking.

We presented a viable SO(10) model with discrete flavor symmetry in [38]. There we generated the observed lepton

mixing but we fitted the fermion masses by assuming the group A4 as flavor symmetry and the “constrain” of assigning

right and left-handed fermion fields to the same representations. Indeed, we showed in [38] that the assignment of

both left-handed and right-handed SM fields to triplets of A4, that is therefore compatible with SO(10), can lead to

the charged fermion textures proposed in [56] and given by
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, (2)

with hf
0 , hf

1 and hf
2 distinct parameters. In [38], in order to obtain a mass matrix of the form of Mf in eq. (2) without

spoiling the predictions of the neutrino sector, we introduced higher order operators containing simultaneously a set

of SO(10) representations 45. The lepton mixing was naturally generated by the breaking pattern of A4, while the

fermion masses were obtained with a possible tuning in the flavor parameters not constrained by the symmetries.

We addressed the problem of the fine tuning in [39] where the AF
4 flavor discrete symmetry is embedded into

(SO(3)L × SO(3)R)F . In that way we explicitly disentangled the mixing problem from the hierarchy one. We broke

the continuous flavor (SO(3)L × SO(3)R)F symmetry both dynamically and explicitly. The two breaking terms

produced the charged fermion hierarchies on one hand and solved the leptonic mixing problem on the other hand. In

this way not only a tribimaximal neutrino mixing was naturally generated but also the charged fermion hierarchies

by dynamically breaking of the continuous left-right flavor symmetry. Finally the Cabibbo angle was obtained by

taking into account higher order operators. However the left-right flavor group symmetry (SO(3)L × SO(3)R)F of

[39] is not compatible with a grand unified gauge group, like SO(10), with all the fermions of one family in the same

representation, because in left-right flavor symmetries the fermions of one family belong to different representations

of the flavor group.

In this paper we merge all these ingredients together and we are able to construct a non renormalizable model with

grand unified gauge group SO(10) and with an extended flavor symmetry (SU(3)× U(1))F . In this new model both

the tribimaximal lepton mixing matrix and the hierarchy among the mass of the 3rd and the other fermion families

naturally appear from the symmetry breaking pattern. Our model is non renormalizable, however a renormalizable

version of it can be easily constructed because the particular structure of the operators introduced here. For this

purpose viable methods are well known, i.e. by integrated out given heavy extra fields [57].

Our effective SO(10) invariant Lagrangian is

L = LSU(3)F + δLA4
, (3)

where LSU(3)F is SO(10)×(SU(3)×U(1))F invariant and δLA4
is the explicit breaking term of the SU(3)F symmetry

that, at this level, leaves SO(10) unbroken. The charge assignment of the fields is such that the SU(3)F invariant

operator with lowest mass dimensions is only [38]

LSU(3)F = h0 161045A 45B 16Φ , (4)

where Φ, singlet of SO(10), transforms as 6 with respect to SU(3)F . The scalar fields 10, 45A and 45B are singlets

of SU(3)F . As noticed in [38], thanks to the two 45s scalar fields, the operator in eq. (4) can give no contribution



to the neutrino sector for some set of the 45s vev (i.e. in the explicit model of [38] one vev is proportional to the

right-handed isospin T3R
and the other one to the hypercharge Y , here the directions A and B are different but still

with the same property).

When the scalar field Φ develops a vev in the direction 〈Φij〉 = 1 (∀ i , j) we obtain a democratic mass matrices for

all the charged fermions, that gives a massive 3rd family and two massless families. The democratic structure of the

charged fermion mass matrices avoids the fine tuning needed to explain the mass hierarchy between the 3rd and the

other two families that is usually needed in presence of charged fermion mass matrices of the form of eq. (2). The

democratic mass matrices preserves the (U(2)×Z3)
F subgroup of (SU(3)×U(1))F that leaves invariant the (1, 1, 1)

vector in the flavor space. Therefore at this stage only one mixing angle can be generated.

The neutrino mass matrix and the first and second families masses arise when we switch on the explicitly breaking

terms of SU(3)F into A4. If we neglect the ordering problem of the 45s and the possibility to have more than one

flavon for each operator, the most general Lagrangian invariant under the flavor structure of the theory is

δLA4
= hijk φk

16
i
10 45A 45B 45C 45D 16

j + h′
ijk φk

16
i
45C 45D 10 45A 45B 16

j + (5)

h′′
ijk φ̃k

16
i
10 45C 45D 16

j + g 16
i
126 16

i ζS + g′ijk 16
i
126 16

j ζk
T

where the indices {i, j, k, l} are A4, subgroup of SU(3), indeces and the sum over the gauge indices is understood.

The scalar field 126 is a singlet 1
′ of A4, while the 45C , and 45D are other scalars that transform as 45 of SO(10),

and are singlets of A4. The flavon fields φ, φ̃, ζT are triplets under A4, while ϕ and ζS are singlets.

As found in [38] the terms in the second line of δLA4
generates the light neutrino mass matrix. The terms in the

first two lines in δLA4
gives a contribution to the mass matrices that has the nice properties to commute with the

leading order term obtained from eq. (3).

After the breaking of A4, it generates the first and second family masses and fix the mixing matrix in the lepton

sector to be tribimaximal.

The plan of the paper is as follow. First, in sec. II we introduce the basic ingredient of the model, i.e. the

general structure of the symmetry breaking, all the involved fields and how they transform under the gauge and flavor

symmetries. Then in sec. III we show how the 3rd family masses are generated via the breaking (SU(3) × U(1))F

into (U(2) × Z3)
F , how the 1st and 2nd family masses are generated together with maximal mixings in the lepton

sector, and how the neutrino masses are generated with a resulting tribimaximal mixing matrix in the lepton sector.

Finally we show how the Cabibbo angle is naturally generated without the introduction of new operators. Finally in

sec. V we report our conclusions.

II. BASIC INGREDIENTS

Let us first investigate the field content of the theory and the flavor charges. We report the field content of our

model in Table (I). With our charge assignment, the only allowed operators of lower mass dimensions are given in

eqs. (4-5), if we neglect the ordering problem of the 45 and the possibility to have more than one flavon for each

operator. In this sense our Lagrangian is the most general one invariant under the flavor structure of the theory.

Moreover, independently from the fact that nature prefer a dominant seesaw of type I (i.e. heavy Majorana right-

handed neutrino mass and intermediate Dirac neutrino mass) or of type II (i.e. light Majorana left-handed neutrino

mass) or a mixed scenario, the transformation properties of the ζS must be assumed to be 1
′, as we will explain in

sec. IVB.

In our opinion, the ordering problem can be related to a deeper structure of the theory, for example its version as a

renormalizable model, and we will not investigate further it here. However the fact that will not be possible to express

the directions A and B as rational combinations of C and D, together with the fact that 45 appears only as couples



(45A,45B) and (45C ,45D) seems to us to indicate that the right representations to introduce are the irreducible part

of the 2025 that can get a vev diagonal over the 16 matter fields with charges AB and CD. If this is the case we are

really including all the allowed operator and there is not any more an ordering problem.

After symmetry breaking, once the Higgs acquire vevs, the quadratic part for the fermions of the Lagrangian in

eqs. (4-5) can be rewritten in a compact form, i.e. with an abuse of notation in the SO(10) contractions, as

LDirac = h0 (16116
′
1 + 16216

′
2 + 16316

′
3) v10 + (6a)

+
[

h1 (16116
′′′
2 + 16216

′′′
3 + 16316

′′′
1 ) + h2 (16116

′′′
3 + 16216

′′′
1 + 16316

′′′
2 )

]

v10 vφ (6b)

+
[

h′
1 (16

′′
116

′
2 + 16

′′
216

′
3 + 16

′′
316

′
1) + h′

2 (16
′′
116

′
3 + 16

′′
216

′
1 + 16

′′
316

′
2)

]

v10 vφ (6c)

+
[

h′′
1 (16116

′′
2 + 16216

′′
3 + 16316

′′
1) + h′′

2 (16116
′′
3 + 16216

′′
1 + 16316

′′
2)

]

v10 v
φ̃

(6d)

+ g(161161 + 162162 + 163163) v
126

vζS
+

[

g′1161162 + g′2162161

]

v
126

vζT
(6e)

where we have assumed that the two A4-3plets φ and φ̃ acquire vev in the (1, 1, 1) direction of A4, while the ζT vev

is in the direction (0, 0, 1). In eqs. (6) we introduced

16
′′′
i ≡ v45A

v45B
v45C

v45D
16i , 16

′′
i ≡ v45C

v45D
16i , (7)

16
′
i ≡ v45A

v45B
16i , with i = 1, 2, 3 .

We obtain the following expression by absorbing the vevs of the 45s into the coupling constants

16
′ =

(

x′
Q Q, x′

U U c, x′
D Dc, x′

L L, x′
E Ec, x′

N N c
)

, (8a)

16
′′ =

(

x′′
Q Q, x′′

U U c, x′′
D Dc, x′′

L L, x′′
E Ec, x′′

N N c
)

, (8b)

16
′′′ =

(

x′′′
Q Q, x′′′

U U c, x′′′
D Dc, x′′′

L L, x′′′
E Ec, x′′′

N N c
)

(8c)

where x′
f , x′′

f , and x′′′
f are the quantum numbers respectively of the product of the charges A and B, of the product

of the charge C and D, and of the product of the charges A, B, C, and D. In particular we notice that

x′′′
f = x′′

fx′
f . (9)

We report the charges of each fermion in Table (II).

III. DYNAMICAL BREAKING

A. (SU(3) × U(1))F → (U(2) × Z3)
F gives the charged fermion 3rd family masses

We assume that the Φ SU(3)F -6plet field acquire a vev 〈Φij〉 = vΦ (∀ i , j). In this case the charged fermion mass

matrix obtained is the so-called democratic mass matrix [58] given by

M0f =
mf

3

3







1 1 1

1 1 1

1 1 1






, (10)

where

mU
3 = vΦ(x′

U + x′
Q)vU

10h0 , (11a)

mD
3 = vΦ(x′

D + x′
Q)vD

10
h0 , (11b)

mN
3 = vΦ(x′

N + x′
L)vU

10
h0 , (11c)

mE
3 = vΦ(x′

E + x′
L)vD

10
h0 . (11d)



This matrix has only one eigenvalue different from zero, mf
3 , and can be assumed to be the mass of the 3rd family.

To avoid any non diagonal contribution to the Dirac neutrino mass matrix we impose

x′
N + x′

L = 0 . (12a)

To have the bottom-tau unification, we must impose also

x′
L + x′

E = x′
Q + x′

D . (12b)

The unitary matrix U that diagonalizes the symmetric matrix M0f has one angle and the three phases undeterminated.

One possible parametrization is given by [39]

U =
1√
3









√
2 cos θ eiα

√
2 sin θei(β+γ) 1

−eiα( cos θ√
2

+
√

3
2 sin θe−iγ) eiβ(

√

3
2 cos θ − 1√

2
sin θeiγ) 1

−eiα( cos θ√
2

−
√

3
2 sin θe−iγ) −eiβ(

√

3
2 cos θ + 1√

2
sin θeiγ) 1









. (13)

The freedom in the U matrix shows the remaining flavor symmetry U(2)F . The unknow angle and phases are fixed

only after breaking the democratic structure of M0f , i.e. the U(2)F flavor symmetry, with a small perturbation δMf ,

i.e.

Mf = M0f + δMf .

The effect of δMf is to give a small mass to the first and second family and to fix the mixing angles. To have that

the mixing matrix diagonalizing the full Mf belongs to the families of matrix of eq. (13), we must require that δMf

commute with M0f . This has the nice consequence that we have automatically the selection of the breaking pattern

of A4 into Z3.

IV. EXPLICITLY BREAKING SU(3)F → A4

We will assume the presence of an hidden scalar sector that breaks spontaneously the continuous SU(3)F into the

discrete A4. Under this hypothesis it is quite natural to assume that the explicit breaking terms to be added to the

Lagrangian are small.

A. A4 → Z3 generates the charged fermions 1st and 2nd family masses and mixing

When the φ and φ̃ A4-3plets take vev as 〈φ̃〉 ∝ 〈φ〉 = vφ (1, 1, 1) we have new contributions to the mass matrices.

I.e., for the charged leptons we get the operator

δE
ijk ǫαβ Hα

d

(

Lβ
i Ej φk

)

→ ǫαβ Hα
d

[

δE
1 (Lβ

2E3 + Lβ
3E1 + Lβ

1E2) + δE
2 (Lβ

3E2 + Lβ
1E3 + Lβ

2E1)
]

vφ , (14)

where the two δE
i arise by the two different contractions of A4. The value of δEs can be read from the Lagrangian in

eq. (6) and is

δE
1 = (h1x

′′′
E + h2x

′′′
L ) + (h′

1x
′′
Lx′

E + h′
2x

′
Lx′′

E) + (h′′
1x′′

E + h′′
2x′′

L) , (15)

δE
2 = (h2x

′′′
E + h1x

′′′
L ) + (h′

2x
′′
Lx′

E + h′
1x

′
Lx′′

E) + (h′′
2x′′

E + h′′
1x′′

L) . (16)

Because the SO(10) unification, the operators in the up, down and neutrino sectors have similar expressions. In

particular for the contributions to the Dirac neutrino mass matrix we have

δN
1 = (h1x

′′′
N + h2x

′′′
L ) + (h′

1x
′′
Lx′

N + h′
2x

′
Lx′′

N ) + (h′′
1x′′

N + h′′
2x′′

L) , (17)

δN
2 = (h2x

′′′
N + h1x

′′′
L ) + (h′

2x
′′
Lx′

N + h′
1x

′
Lx′′

N ) + (h′′
2x′′

N + h′′
1x′′

L) . (18)



At this stage we do not want any contribution to the Dirac neutrino mass matrix, without any fine tuning in the

coupling constants hs. For this reason we have to impose the conditions

x′′′
L = 0 = x′′′

N , x′′
Lx′

N = 0 = x′
Lx′′

N , x′′
L = 0 = x′′

N . (19)

By reducing the set of conditions in eqs. (9), (12), and (19) the only non trivial solution is

x′ = AB ∝ 3 (Y 2) − 12 (T 2
3R

) + 20 T3R
Y (20a)

x′′ = C D ∝ (Y T3R
) (20b)

x′′′ = AB C D = x′′x′ (20c)

In particular we notice that we have

x′′
Q = x′′′

Q = x′′
L = x′′′

L = x′′
N = x′′′

N = 0 . (21)

Finally, by taking into account the relations in eq. (21), and the relation (9), we get from eq. (15)

δE
1 = x′′

E(x′
Eh1 + x′

Lh′
2 + h′′

1 ) , δE
2 = x′′

E(x′
Eh2 + x′

Lh′
1 + h′′

2) , (22a)

δU
1 = x′′

U (x′
Uh1 + x′

Qh′
2 + h′′

1 ) , δU
2 = x′′

U (x′
Uh2 + x′

Qh′
1 + h′′

2) , (22b)

δD
1 = x′′

D(x′
Dh1 + x′

Qh′
2 + h′′

1 ) , δD
2 = x′′

D(x′
Dh2 + x′

Qh′
1 + h′′

2) , (22c)

δN
1 = 0 , δN

2 = 0 . (22d)

We notice here the importance of having the three operators. In fact, for example, if we had only one than we should

obtain the relations

me

mµ

=
md

ms

=
mu

mc

. (23)

While the first relation can be assumed true at the unification scale, with the given uncertainty in the determination

of the fermion masses at such scale, the second relation is surely false. The introduction of the other operators allows

us to escape from this consequence. We notice that there could be a direct relation between the fact that md

ms
6= mu

mc

and the presence of a non zero CP-violating phase. The effect of the other explicit breaking terms in the mass matrices

is translated in a perturbation of the democratic mass matrices of eq. (10), that is

Mf =
mf

3

3







1 1 1

1 1 1

1 1 1






→ M̃f =

mf
3

3







1 1 + δf
1 1 + δf

2

1 + δf
2 1 1 + δf

1

1 + δf
1 1 + δf

2 1






(24)

with the obvious correspondences vE = vD. The mass matrices of eq. (24) are diagonalized by

Ũω =
1√
3







ω ω2 1

ω2 ω 1

1 1 1






, (25)

corresponding to the U of eq. (13) with θ = π/4, α = 2π/3, β = 5π/6 and γ = π/2. The mass matrices M̃f of eq. (24)

give an heavy 3rd family mass mf
3 and small 1st and 2nd family masses satisfying

mf
1

mf
3

=
ω δf

1 + ω2 δf
2

3 + δf
1 + δf

2

,
mf

2

mf
3

=
ω2 δf

1 + ω δf
2

3 + δf
1 + δf

2

. (26)



B. Neutrino masses and mixing

The Yukawa interactions for the neutrinos come from the coupling of the fermion field 16 with the 126 Higgs

and the (ζS , ζT ) flavons. The components of the 126 that can acquire a vev1 are a triplet ∆, three singlets2 ∆̃, a

doublet Γ and two other singlets2 Γ̃α of the weak SU(2)L. When the A4-triplet field ζT takes vev in the A4 direction

〈ζT 〉 ∼ (0, 0, 1) - notice that this alignment is different from the one used in many models as for example in [38, 46]

-, the resulting neutrino mass matrices are given by

Mνν =







aνν bνν 0

bνν ω aνν 0

0 0 ω2 aνν






, MνN =







aνN bνN 0

bνN ω aνN 0

0 0 ω2 aνN






, MNN =







aNN bNN 0

bNN ω aNN 0

0 0 ω2 aNN






,(27)

where as and bs are the product of the vevs of the 126 components with the coupling constants g and g′. All the

mass matrices in eq. (27) are diagonalized by the same mixing matrix. I.e. we get

Mx =







ax bx 0

bx ω ax 0

0 0 ω2 ax






= Ṽ ⋆

ν







ω2 ax + bx 0 0

0 ω2 ax 0

0 0 −ω2 ax + bX






Ṽ †

ν (28)

with x ∈ {νν, νN, NN}. The common mixing matrix Ṽν is given by

Ṽν =









ω√
2

0 −i ω√
2

ω2

√
2

0 i ω2

√
2

0 1 0









. (29)

The fact that all the mass matrices are diagonalized by the same mixing matrix Ṽν , translates in the nice result that,

independently on the seesaw mechanism acting to generate the low energy neutrino mass, the neutrino mixing matrix

is given by Ṽν itself. In fact we have

Mlow = Mνν + MνN

1

MNN

MT
νN (30)

and consequently, by indicating with an index ∆ the corresponding diagonalized matrix, we get

Ṽ T
ν MlowṼν = Ṽ T

ν Mνν Ṽν + Ṽ T
ν MνN (Ṽν Ṽ †

ν )
1

MNN

(Ṽ ⋆
ν Ṽ T

ν )MT
νN Ṽν

= Ṽ T
ν Mνν Ṽν + Ṽ T

ν MνN Ṽν

1

Ṽ T
ν MNN Ṽν

Ṽ T
ν MT

νN Ṽν

= M∆
νν + M∆

νN

1

M∆
NN

M∆
νN

= M∆
low , (31)

where we inserted twice the identity matrix (Ṽν Ṽ †
ν ) = 1 = (Ṽ ⋆

ν Ṽ T
ν ). The result is that the neutrino mass matrix is

diagonalized by the mixing matrix Ṽν . On the other hand, the charged leptons are diagonalized by L → Ũω L, so we

obtain a tribimaximal mixing for the lepton sector, that is

Vleptons = Ũ † · Ṽν =









2√
6

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2









. (32)

1 We neglect here any contribution from the (1,1,6)-plet of the Pati-Salam subgroup of SO(10).
2 The three singlets ∆̃ and the two singlets Γ̃ are respectively a triplet and a doublet under the SU(2)R of the Pati-Salam group.



The same operator that generates the neutrino masses and the lepton mixing matrix, generates also the Cabibbo

angle in the quark sector. In fact we have that, with the inclusion of the contributions from the 126, the charged

fermion mass matrices of eq. (24) acquire a very small diagonal contribution and become3

Mf =
mf

3

3







1 + ρf 1 + δf
1 1 + δf

2

1 + δf
2 1 + ρfω2 1 + δf

1

1 + δf
1 1 + δf

2 1 + ρfω






.

In the basis rotated by Ũω of eq. (25), namely M̃f ≡ Ũ †
ω Mf

eff Ũω, the charged fermion mass matrices are now given

by

M̃f =







mf
1 ρ̃fω2 0

0 mf
2 ρ̃fω2

ρ̃fω2 0 mf
3






(33)

where ρ̃f = mf
3/3ρf . Let’s assume that the ρ̃f are small arbitrary parameters of order mf

3O(λ5) , where λ is the

Cabibbo angle. The crucial point is that this assumption has the consequences that our operators give negligible

effects in the down and charged lepton sectors, since for the down and charged leptons we have (mD,L
1 , mD,L

2 , mD,L
3 ) ∼

(λ4, λ2, 1) and M̃D,L may be considered diagonals. On the contrary for the up quarks we have that (mU
1 , mU

2 , mU
3 ) ∼

(λ7, λ4, 1) and therefore the off-diagonal entry (1,2) cannot be neglected: the matrix M̃U is diagonalized by a rotation

in the 12 plane with sin θ12 ≈ λ. This rotation produces the Cabibbo angle in the CKM. In fact while MD is

still diagonalized by Uω, we have that MU is diagonalized by V U†
L U †

ωMUUω V U
R where V U

LR are unitary matrix,

approximatively rotations in the 12 plane, and therefore the CKM mixing matrix is given by

VCKM = (V U
L )† U †

ω Uω ≡ (V U
L )† .

The charm and top quark masses are almost unaffected by the corrections and still are given by mU
2 and mU

3 respec-

tively. The up quark mass is obtained by tuning the ρ̃U .

V. CONCLUSIONS

In this work we addressed the two aspects of the flavor puzzle: the charged fermion mass and the mixing hierarchies.

Following the idea that the mass hierarchy and large mixing angles are not originated at the same step in the symmetry

breaking pattern, we introduced a GUTF SO(10) × (SU(3) × U(1))F model.

On one hand, a democratic structure for the charged fermion mass matrices arises from the vev of a scalar that

transforms as a 6̄ under the flavor group SU(3)F . In this way the hierarchy between the 3rd family charged fermion

masses and the others two is explained in a natural way. When the flavor group is dynamically broken, the CKM is

given by an undetermined rotation in the 1 − 2, while neutrino are massless and the lepton mixing is undetermined.

On the other hand, the explicitly breaking of SU(3)F into A4 generates automatically the first and second family

charged fermion masses m1,2 ≪ m3. However, in order to fit the hierarchy between the masses of the first and second

families, we require a tuning.

Finally, the same operators generate the neutrino masses, the large mixing lepton angle and the Cabibbo angle. In

fact, assuming that the light neutrino Yukawa interactions come from the couplings with an A4 singlet and an A4

3 We notice that the ratio of the vev of the doublets in the 126 can have a different value from the one in the 10, for this reason we put
the index f to the ρ parameter, with the relation ρD = ρE .



triplet that acquires vev in the direction (0, 0, 1), we have showed that the lepton mixing matrix is the tribimaximal

one. In particular in our model these operators give corrections to the entry (1, 2) of all charged fermion mass matrices.

If the ratio between this correction and mc is of the order of the Cabibbo angle λ, we obtain that a rotation of order

λ in the 12 plane appears in the up mass matrix. However the down and charged lepton mass matrices are almost

unaffected by such corrections. This mismatching gives up the Cabibbo angle in the quark sector as a net result.
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L Q N E U D Hu Hd 126 45A 45B 45C 45D Φ φ φ̃ ζS ζT

SO(10) 16 10 126 45 45 45 45 1 1 1 1 1

SU(3)F 3 1 1 1 1 1 1 6

U(1)F − 1

2
(δ + χ + ω) ω − ρ − σ ω + χ σ − β β + χ χ δ δ + ρ ρ − χ ρ + σ δ δ

A4 3 1 1 1 1 1 1 3 3 1′ 3

TABLE I: The field content of the model. With this charge assignment, all the allowed operators are the only ones in our

Lagrangian of eqs. (4-5), as explained in the text.

X Y B − L T3R

Q 1 1/3 1 0

Uc 1 -4/3 -1 1/2

Dc -3 2/3 -1 -1/2

L -3 -1 -3 0

Ec 1 2 3 -1/2

Nc 5 0 3 1/2

TABLE II: U(1) gauge quantum numbers for the low energy matter fields [59].

(SU(3) × U(1))F

explicitly
AF

4

spontaneously
by 〈Φ〉

(U(2) × Z3)
F

(charged lepton 3rd family masses)

spontaneously
by 〈φ〉, 〈φ̃〉

ZF
3

(charged lepton 1st and 2nd family masses
and quark mixing with 3rd family)

spontaneously
by 〈ζT 〉

Nothing
(Neutrino masses,

Large lepton mixings,
Cabibbo angle)

FIG. 1: Diagrammatic representation of the flavor symmetry structure of the model. The upper horizontal arrow indicates the

explicit global symmetry breaking SU(3)F → AF
4 due to the Yukawa terms induced by a hidden sector. The other arrows show

the spontaneous breaking. The hierarchy among the masses is not directly related to the mixing angles.
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