1,928 research outputs found

    Adaptive Regularization for Nonconvex Optimization Using Inexact Function Values and Randomly Perturbed Derivatives

    Get PDF
    A regularization algorithm allowing random noise in derivatives and inexact function values is proposed for computing approximate local critical points of any order for smooth unconstrained optimization problems. For an objective function with Lipschitz continuous pp-th derivative and given an arbitrary optimality order qpq \leq p, it is shown that this algorithm will, in expectation, compute such a point in at most O((minj{1,,q}ϵj)p+1pq+1)O\left(\left(\min_{j\in\{1,\ldots,q\}}\epsilon_j\right)^{-\frac{p+1}{p-q+1}}\right) inexact evaluations of ff and its derivatives whenever q{1,2}q\in\{1,2\}, where ϵj\epsilon_j is the tolerance for jjth order accuracy. This bound becomes at most O((minj{1,,q}ϵj)q(p+1)p)O\left(\left(\min_{j\in\{1,\ldots,q\}}\epsilon_j\right)^{-\frac{q(p+1)}{p}}\right) inexact evaluations if q>2q>2 and all derivatives are Lipschitz continuous. Moreover these bounds are sharp in the order of the accuracy tolerances. An extension to convexly constrained problems is also outlined.Comment: 22 page

    Adaptive Regularization Algorithms with Inexact Evaluations for Nonconvex Optimization

    Get PDF
    A regularization algorithm using inexact function values and inexact derivatives is proposed and its evaluation complexity analyzed. This algorithm is applicable to unconstrained problems and to problems with inexpensive constraints (that is constraints whose evaluation and enforcement has negligible cost) under the assumption that the derivative of highest degree is β\beta-H\"{o}lder continuous. It features a very flexible adaptive mechanism for determining the inexactness which is allowed, at each iteration, when computing objective function values and derivatives. The complexity analysis covers arbitrary optimality order and arbitrary degree of available approximate derivatives. It extends results of Cartis, Gould and Toint (2018) on the evaluation complexity to the inexact case: if a qqth order minimizer is sought using approximations to the first pp derivatives, it is proved that a suitable approximate minimizer within ϵ\epsilon is computed by the proposed algorithm in at most O(ϵp+βpq+β)O(\epsilon^{-\frac{p+\beta}{p-q+\beta}}) iterations and at most O(log(ϵ)ϵp+βpq+β)O(|\log(\epsilon)|\epsilon^{-\frac{p+\beta}{p-q+\beta}}) approximate evaluations. An algorithmic variant, although more rigid in practice, can be proved to find such an approximate minimizer in O(log(ϵ)+ϵp+βpq+β)O(|\log(\epsilon)|+\epsilon^{-\frac{p+\beta}{p-q+\beta}}) evaluations.While the proposed framework remains so far conceptual for high degrees and orders, it is shown to yield simple and computationally realistic inexact methods when specialized to the unconstrained and bound-constrained first- and second-order cases. The deterministic complexity results are finally extended to the stochastic context, yielding adaptive sample-size rules for subsampling methods typical of machine learning.Comment: 32 page

    Sleeping with the enemy. The not-so-constant Italian stance towards Russia

    Get PDF
    A taken-for-granted assumption within the Italian foreign affairs community argues that the relationship between Rome and Moscow follows a generally cooperative attitude, fostered by strong cultural, economic and political ties. This narrative misses a significant part of the tale, which is at odds with the idea that the good relations with Russia are a ‘constant feature’ of Italy’s foreign policy. Indeed, competitive interaction has frequently emerged, as a number of events in the last decade confirm. To challenge conventional wisdom, the article aims to provide a more nuanced interpretation of the investigated relationship. Focusing on the outcomes of global structural changes on Italian foreign policy, it posits that Rome is more prone to a cooperative stance towards Moscow whenever the international order proves stable. By contrast, its interests gradually diverge from those of its alleged ‘natural’ partner as the international order becomes increasingly unstable. This hypothesis is tested by an in-depth analysis of Italy’s posture towards Russia amidst the crisis of the international liberal order (2008-on). Furthermore, the recurrence of a similar dynamic is verified through a diachronic comparison with two other international orders in crisis, i.e. that of the interwar period (1936-1941) and that of the Cold War (1979-1985)

    Dynamic energy release rate in couple-stress elasticity

    Get PDF
    This paper is concerned with energy release rate for dynamic steady state crack problems in elastic materials with microstructures. A Mode III semi-infinite crack subject to loading applied on the crack surfaces is considered. The micropolar behaviour of the material is described by the theory of couple-stress elasticity developed by Koiter. A general expression for the dynamic J-integral including both traslational and micro-rotational inertial contributions is derived, and the conservation of this integral on a path surrounding the crack tip is demonstrated

    Remarks on the energy release rate for an antiplane moving crack in couple stress elasticity

    Get PDF
    This paper is concerned with the steady-state propagation of an antiplane semi-infinite crack in couple stress elastic materials. A distributed loading applied at the crack faces and moving with the same velocity of the crack tip is considered, and the influence of the loading profile variations and microstructural effects on the dynamic energy release rate is investigated. The behaviour of both energy release rate and maximum total shear stress when the crack tip speed approaches the critical speed (either that of the shear waves or that of the localised surface waves) is studied. The limit case corresponding to vanishing characteristic scale lengths is addressed both numerically and analytically by means of a comparison with classical elasticity results.Comment: 37 pages, 13 figure

    A Non-Local Mean Curvature Flow and its semi-implicit time-discrete approximation

    Full text link
    We address in this paper the study of a geometric evolution, corresponding to a curvature which is non-local and singular at the origin. The curvature represents the first variation of the energy recently proposed as a variant of the standard perimeter penalization for the denoising of nonsmooth curves. To deal with such degeneracies, we first give an abstract existence and uniqueness result for viscosity solutions of non-local degenerate Hamiltonians, satisfying suitable continuity assumption with respect to Kuratowsky convergence of the level sets. This abstract setting applies to an approximated flow. Then, by the method of minimizing movements, we also build an "exact" curvature flow, and we illustrate some examples, comparing the results with the standard mean curvature flow

    The strange case of negative reflection

    Get PDF
    In this paper, we show the phenomenon of negative reflection occurring in a mechanical phononic structure, consisting of a grating of fixed inclusions embedded in a linear elastic matrix. The negative reflection is not due to the introduction of a subwavelength metastructure or materials with negative mechanical properties. Numerical analyses for out-of-plane shear waves demonstrate that there exist frequencies at which most of the incident energy is reflected at negative angles. The effect is symmetric with respect to a line that is not parallel to the normal direction to the grating structure. Simulations at different angles of incidence and computations of the energy fluxes show that negative reflection is achievable in a wide range of loading conditions

    On fracture criteria for dynamic crack propagation in elastic materials with couple stresses

    Get PDF
    The focus of the article is on fracture criteria for dynamic crack propagation in elastic materials with microstructures. Steady-state propagation of a Mode III semi-infinite crack subject to loading applied on the crack surfaces is considered. The micropolar behavior of the material is described by the theory of couple-stress elasticity developed by Koiter. This constitutive model includes the characteristic lengths in bending and torsion, and thus it is able to account for the underlying microstructures of the material. Both translational and micro-rotational inertial terms are included in the balance equations, and the behavior of the solution near to the crack tip is investigated by means of an asymptotic analysis. The asymptotic fields are used to evaluate the dynamic J-integral for a couple-stress material, and the energy release rate is derived by the corresponding conservation law. The propagation stability is studied according to the energy-based Griffith criterion and the obtained results are compared to those derived by the application of the maximum total shear stress criterion.Comment: 31 pages, 6 figure
    corecore