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On fracture criteria for dynamic crack propagation
in elastic materials with couple stresses
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Abstract

The focus of the article is on fracture criteria for dynamic crack propagation in elastic
materials with microstructures. Steady-state propagation of a Mode III semi-infinite crack
subject to loading applied on the crack surfaces is considered. The micropolar behavior of
the material is described by the theory of couple-stress elasticity developed by Koiter. This
constitutive model includes the characteristic lengths in bending and torsion, and thus it is
able to account for the underlying microstructures of the material. Both translational and
micro-rotational inertial terms are included in the balance equations, and the behavior of
the solution near to the crack tip is investigated by means of an asymptotic analysis. The
asymptotic fields are used to evaluate the dynamic J-integral for a couple-stress material, and
the energy release rate is derived by the corresponding conservation law. The propagation
stability is studied according to the energy-based Griffith criterion and the obtained results
are compared to those derived by the application of the maximum total shear stress criterion.

Keywords: Couple-stress elasticity, Dynamic fracture, Steady-state propagation, Energy
release rate, Fracture criterion.
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1 Introduction

In many experimental analyses it has been shown that the mechanical behavior of brittle mate-
rials such as ceramics, composites, cellular materials, foams, masonry, bones tissues, glassy and
semicrystalline polymers, is strongly affected by the the microstructure.

The influence of materials inhomogeneities and defects on the mechanical properties of the
materials and their interactions with cracks have been extensively studied in the framework of
classical theory of elasticity by means of homogenization theories (Hashin, 1959; Eshelby, 1976;
Budiansky, 1965; Budiansky and O’ Connell, 1976), and the effective elastic moduli of bodies
containing several ensembles of microstructures have been determined using for instance self-
consistent methods (Kachanov, 1987, 1992; Huang et al., 1994). Furthermore, modern multi-
scale simulation approaches have been developed for modelling microstructural properties of the
materials (Askes et al., 2008, 2009; Silberschmidt, 2009; Andrade et al., 2011).

In Bigoni and Drugan (2007) it has been shown that classical homogenization results de-
scribe accurately elastic properties of heterogeneous materials in situations where the bodies are
subjected to slowly-varying loading and the displacement and stress gradients are small. If high
gradients are present, standard homogenized materials cannot represent the physical response of
composite elastic media. Moreover, approaches based on classical elasticity theory cannot always
predict enough accurately the size effect experimentally observed when the representative scale
of the deformation field becomes comparable to the length scale of the microstructure (Lakes,
1986). For example, it has been detected that in presence of stress concentration, such as near
inclusions and holes, the strength of the material is higher if the grain size is smaller, and that
the bending and torsional strength of beams and wires are greater if their cross-section is thinner
(Fleck et al., 1994). Since stress concentration factors derived applying standard homogeniza-
tion procedures to Cauchy elastic materials depend only on the shape of the inhomogeneities and
not on its size, they cannot describe accurately these effects. On the other hand, the utilization
of multi-scale techniques for studying microstructural properties of the materials implies chal-
lenging numerical computations, and the validation of the results requires a critical comparison
with analytical solutions and experimental data.

Generalized theories of continuummechanics, such as micropolar elasticity (Cosserat and Cosserat,
1909), indeterminate couple stress elasticity (Koiter, 1964) and strain gradient theories (Fleck and Hutchinson,
2001; Aifantis, 2011; Dal Corso and Willis, 2011), may be considerate as an effort to include rig-
orously defined characteristic length scales and to study influence of microstructures on the
material behavior avoiding strong numerical calculations required by multi-scale approaches.
Indeed, exact analytical formulas for characteristic lengths in couple stress elastic materials
have been derived via higher order homogenization of heterogeneous Cauchy elastic materials
by Bigoni and Drugan (2007) and via numerical computations by Askes and Aifantis (2011).
Analytical solutions derived for couple stress and strain gradient solids can also be used for val-
idating results of numerical simulations and analyzing experimental data obtained for materials
with microstructures (Lakes, 1995).

Indeterminate couple stress elasticity theory developed by Koiter (1964) provides two dis-
tinct characteristic length scales for bending and torsion. Moreover, it includes the effects of the
microrotational inertia, which can be considered as an additional dynamic length scale. There-
fore, in order to study crack propagation stability in couple-stress elastic materials, new fracture
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criteria accounting for both effects of scale lengths and microrotational inertia must be formu-
lated (Morozov, 1984). For antiplane crack problems, in Georgiadis (2003) and Radi (2008) a
critical level τC for the maximum total shear stress ahead of the crack tip at which the crack
starts propagating has been proposed as fracture criterion. This is known as the maximum total
shear stress criterion, and later in the article we will refer to it as the tmax criterion.

The J-integral for static crack problems in couple stress elasticity has been derived by
Lubarda and Markenscoff (2000) in the case of an homogeneous material, and by Piccolroaz et al.
(2012) for an interfacial crack. The energy release rate can be evaluated by means of the con-
servation of this integral, and further in the paper we will refer to it as ERR. Nevertheless,
energy-based dynamic fracture criteria for this kind of materials are still unknown in literature.
For that reason, the principal aim of this paper is to generalize the static energy release rate
expression to the case of dynamic steady state crack propagation, and to study the effects of the
microstructure on the propagation stability by applying the energy Griffith criterion (Freund,
1998). The results are compared with those obtained in Mishuris et al. (2013), where the tmax

criterion has been adopted.
The structure of the paper is organized as follows: in Section 2 the problem of a semi-

infinite Mode III steady state propagating crack in couple stress elastic materials is formulated.
Both translational and micro-rotational inertial terms are included in the balance equations,
and a distributed loading applied on the crack surfaces is assumed. In Section 3, the dynamic
conservation laws derived by Freund and Hutchinson (1985) and Freund (1998) for classical
elasticity are generalized to couple stress materials. General expressions for the dynamic J-
integral and energy release rate associated to steadily propagating cracks in couple stress elastic
solids are derived. Explicit forms are obtained for the case of a Mode III crack, and the path-
independence of the J-integral is demonstrated in Appendix A.

An asymptotic analysis of the stress and displacement fields near to the crack tip is performed
in Section 4. The contribution of the asymptotic terms to the dynamic energy release rate is
analyzed in details, the leading term corresponding to finite non-zero energy is individuated and
an explicit formula for the J-integral evaluated along a circular path surrounding the crack tip is
derived. The obtained formula involves a constant term depending on the boundary conditions
of the problem and indicating the amplitude of the leading order term of the asymptotic shear
stress. This term is evaluated in closed form in Section 5 by performing an asymptotic expansion
of the full-field solution derived in Mishuris et al. (2013) for the same loading configuration
applied at crack faces. In this Section, the asymptotics expansion of the full-field solution is
also used for deriving an alternative equivalent formula for the dynamic J-integral, calculated
considering the square-shaped path around the crack tip introduced by Freund (1998) and used
in Georgiadis (2003); Gourgiotis et al. (2011); Aravas and Giannakopoulos (2009). The energy
release rate associated to a steady propagating Mode III crack in couple stress elastic solids is
compared to the corresponding expression in classical elastic materials.

In Section 6, the obtained expression for the energy release rate is used for studying subsonic
crack propagation stability. Assuming the energy-based Griffith criterion (Willis, 1971, 1967;
Obrezanova et al., 2002), under the considered loading conditions the steady state propagation
turns out to be unstable regardless of the values the microstructural parameters. This result
appears to be in contrast with those detected in Mishuris et al. (2013) adopting the tmax criterion,
which instead shows a stabilizing effect in presence of relevant microstructures contribution. In
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the authors’ opinion, this discrepancy may be due to the fact that the energy release rate depends
only on the leading term of the asymptotic expansion of the stresses, which dominates very close
to the crack tip but provides unphysical features such as negative total shear stress ahead of the
crack tip. Therefore, at a characteristic distance from the crack tip the sole leading order term
may not describe the correct behavior of stresses and displacements. Differently, the total shear
stress involved in the tmax criterion is calculated by means of the full-field solution, that takes
fully into account the microstructural contributions. As a consequence, in order to study the
crack propagation stability in elastic materials with microstructure, fracture criteria including
also higher order terms of the asymptotic stresses and involving two or more characteristic
parameters should be used. Note that in classical elasticity fracture criteria including higher
order terms contributions such as T-stress criterion (Hancock and Du, 1991; Smith et al., 2006)
have also been proposed.

2 Steady-state cracks in couple stress elastic materials

In this Section the problem of the steady-state dynamic propagation of a Mode III crack in
elastic materials with microstructures is formulated by means of the fully dynamical version
of the couple-stress elastic model, accounting both translational and micro-rotational inertial
terms into the balance equations. Reference is made to a fixed Cartesian coordinate system
(0, x1, x2, x3) centred at the crack tip at the initial time t = 0. Under antiplane shear deforma-
tion, the indeterminate theory of couple stress elasticity (Koiter, 1964) adopted in the present
study provides the following kinematical compatibility conditions between the out-of-plane dis-
placement u3, rotation vector ϕ, strain tensor ε and rotation gradient tensor χ:

ε13 =
1

2
u3,1, ε23 =

1

2
u3,2, ϕ1 =

1

2
u3,2, ϕ2 = −1

2
u3,1, (1)

χ11 = −χ22 =
1

2
u3,12, χ21 = −1

2
u3,11, χ12 =

1

2
u3,22. (2)

Therefore, the rotations are derived from displacement. The rotation gradient tensor χ, also
known as deformations curvature tensor or torsion-flexure tensor (Koiter, 1964), is defined in
the general three-dimensional case as χ = ∇ϕ = ∇ × ε. The vanishing of the Saint Venant
tensor (or incompatibility tensor) requires χ to be irrotational:

∇× χ = ∇×∇× ε = 0. (3)

Using expressions (2), it can be immediately verified that relation (3) is satisfied. According
to the indeterminate couple stress theory the non-symmetric Cauchy stress tensor t can be
decomposed into a symmetric part σ and a skew-symmetric part τ , namely t = σ + τ . In
addition, the couple stress tensor µ is introduced as the work-conjugated quantity of χT . The
reduced tractions vector p and the couple stress tractions vector q are defined as

p = tTn+
1

2
∇µnn × n, q = µ

Tn− µnnn, (4)
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respectively, where n denotes the outward unit normal and µnn = n · µn. The conditions of
dynamic equilibrium of forces and moments, taking into consideration rotational inertia, and
neglecting body forces and body couples, write

σ13,1 +σ23,2 + τ13,1 + τ23,2 = ρü3, µ11,1 +σ21,2 +2τ23 = Jϕ̈1, µ12,1 +σ22,2 − 2τ13 = Jϕ̈2, (5)

where ρ is the mass density and J is the rotational inertia.
Within the context of small deformations theory, the total strain ε and the deformation

curvature χ are connected to stress and couple stress through the following isotropic constitutive
relations

σ = 2Gε + λ(trε)I, µ = 2Gℓ2(χT + ηχ), (6)

where G is the elastic shear modulus, ℓ and η the couple stress parameters, with −1 < η < 1.
Note that for antiplane deformations trε = 0. Both material parameters ℓ and η depend on
the microstructure and can be connected to the material characteristic length in bending and in
torsion, namely

ℓb = ℓ/
√
2, ℓt = ℓ

√

1 + η. (7)

Typical experimental values of ℓb and ℓt for some classes of materials with microstructure can
be found in Lakes (1986, 1995), and analytical expressions for these moduli have been derived
via homogenization of heterogeneous Cauchy elastic materials by Bigoni and Drugan (2007).The
limit value of η = 1 corresponds to vanishing characteristic length in torsion, which is typical of
polycristalline metals. Moreover, from the definitions (7) it follows that ℓt = ℓb for η = 0.5 and
ℓt = ℓb =

√
2 for η = −1. The constitutive equations of the indeterminate couple stress theory

do not define the skew-symmetric part τ of the total stress tensor t, which instead is determined
by the equilibrium equations (5)2,3. Constitutive equations (6) together with the compatibility
relations (1) and (2) give stresses and couple stresses in terms of the out of plane displacement
u3:

σ13 = Gu3,1, σ23 = Gu3,2, (8)

µ11 = −µ22 = Gℓ2(1 + η)u3,12, µ21 = Gℓ2(u3,22 − ηu3,11), µ12 = −Gℓ2(u3,11 − ηu3,22). (9)

The introduction of (9) into (5)2,3 yields:

τ13 = −Gℓ2

2
∆u3,1 +

J

4
ü3,1, τ23 = −Gℓ2

2
∆u3,2 +

J

4
ü3,2, (10)

where ∆ denotes the Laplace operator. By means of (8) and (10), the equation of motion (5)1
becomes

∆u3 −
ℓ2

2
∆∆u3 =

ρ

G
ü3 −

J

4G
∆ü3. (11)

We assume that the crack propagates with a constant velocity v along the x1-axis. In this
case it is convenient to introduce a moving framework x = x1 − vt, y = x2, z = x3, and the out
of the plane displacement can be assumed in the form:

u3(x1, x2, t) = w(x, y). (12)
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It follows that the time derivative of the displacement w can be written in terms of the
derivative with respect to x, namely ẇ = −vw,x and thus ẅ = v2w,xx. Therefore the equation
of motion (11) under steady-state conditions becomes:

∆w − ℓ2

2
∆∆w = m2

(

w,xx − h20ℓ
2∆w,xx

)

(13)

where m = v/cs is the normalized crack velocity, cs =
√

G/ρ is the shear wave speed for
classical elastic materials, the characteristic length h is defined as h = cs/φ with φ =

√

4G/J ,
and h0 = h/ℓ (see Mishuris et al. (2013)).

According to (4), the non-vanishing components of the reduced traction and couple stress
traction vectors along the crack line y = 0 can be written as

p3 = t23 +
1

2
µ22,x, q1 = µ21, (14)

respectively. By using (8)2, (9)1,2, (10)2 and (14), the skew-symmetry of the Mode III crack
problem requires ahead of the crack tip:

w = 0, w,yy − ηw,xx = 0, for x > 0, y = 0. (15)

On the crack surface, vanishing of the reduced traction and couple stress traction yield to
the following boundary conditions for the function w:

w,y −
ℓ2

2

[(

2 + η − 2m2h20
)

w,xx + w,yy

]

,y
= − 1

G
τ(x) w,yy − ηw,xx = 0, for x < 0, y = 0,

(16)
where τ(x) is the loading applied on the crack faces, which is assumed to have the following
form:

τ(x) =
T0

L
ex/L, x < 0. (17)

Note that although we discuss here only a specific loading condition, the main conclusions
reported in this paper have been confirmed for other types of loading.

3 Dynamic energy release rate

In this Section, the dynamic conservation laws obtained for linear elastic media by Freund
(1998) and Freund and Hutchinson (1985) are generalized to couple stress elastic materials. An
explicit integral expression for the dynamic energy release rate associated to steady state cracks
propagation in elastic solids with presence of couple stress is derived.

The energy release rate for a dynamic crack has been defined by Freund (1998) as the
following limit:

E = lim
Γ→0

[

F (Γ)

v

]

, (18)
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where F is the total energy flux through the contour Γ surrounding the crack tip. For couple
stress elastic materials, the energy flux for a dynamic crack propagating along x1-axis is given
by:

F (Γ) =

∫

Γ

[

(W + T )vn1 + tTn · ∂u
∂t

+ µ
Tn · ∂ϕ

∂t

]

ds, (19)

where n is an outward unit normal on Γ, W denotes the strain-energy density

W =
1

2

(

σ · ∇u+ µ
T · ∇ϕ

)

= Gǫ · ǫ+Gℓ2(χ · χ+ ηχ · χT ), (20)

and T is the kinetic energy density

T =
1

2

(

ρ |u̇|2 + J |ϕ̇|2
)

. (21)

Since a Mode III steady-state crack propagating at constant velocity v along the x1-axis is
considered, the expression (12) for the out-of-plane displacement is used and then in the moving
framework (x, y, z) the energy flux (19) assumes the special form

F (Γ) = v

∫

Γ

[

(W + T )nx − tTn · ezw,x − µ
Tn · ϕ,x

]

ds, (22)

then the generalized J-integral for an antiplane dynamic steady-state crack in couple-stress
elastic materials can be defined:

J =
F (Γ)

v
=

∫

Γ

[

(W + T )nx − tTn · ezw,x − µ
Tn ·ϕ,x

]

ds = (23)

=

∫

Γ

[

(W + T )n− p · ez∇w − (∇ϕ)Tq
]

· exds (24)

The expressions (23) and has been proved to be path independent, the details of the demon-
stration are reported in Appendix A. Moreover, the equivalence of the two alternative forms of
the J-integral (23) and (24), the first written in function of the tractions and the second of the
reduced tractions, is demonstrated in Appendix B. The (23) is the generalization of the static
expressions derived by Atkinson and Leppington (1974, 1977), and Lubarda and Markenscoff
(2000) to the antiplane dynamic steady state case. The dynamic energy release rate is then
defined by the limit:

E = lim
Γ→0

∫

Γ

[

(W + T )nx − tTn · ezw,x − µ
Tn · ϕ,x

]

ds. (25)

Using definitions (1) and (2), the strain energy density (20) becomes

W =
G

2
(w2

,x + w2
,y) +

Gℓ2

4

[

(w,xx + w,yy)
2 + 2(1 + η)(w2

,xy − w,xxw,yy)
]

, (26)

whereas for steady state propagation the kinetic energy density is given by

T =
v2

2

[

ρw2
,x +

J

4
(w2

,xy + w2
,xx)

]

. (27)
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A polar coordinates system (r, θ) centered at the crack tip is assumed, and a circular contour
of radius r around the crack tip with n = (cos θ, sin θ, 0) is considered. Then, substituting
expressions (26) and (27) the J-integral (23) becomes

J =

∫ π

−π

{

v2

2

[

ρw2
,x cos θ +

J

4
(w2

,xy + w2
,xx) cos θ −

J

2
w,x (w,xxx cos θ + w,yxx sin θ)

]

+

+
G

2

[

(w2
,y − w2

,x) cos θ − 2w,xw,y sin θ
]

+ (28)

+
Gℓ2

2

[

(∆w)2

2
cos θ −∆w (w,xx cos θ +w,xy sin θ) + w,x (∆w,x cos θ +∆w,y sin θ)

]}

rdθ.

According to the definition (25), the energy release rate can be evaluated as the limit for
r → 0 of the integral (28). In order to evaluate explicitly the J-integral (28) and to investigate
the variation of the energy release rate (25) in function of the crack propagation velocity and
its implications on propagation stability, the behavior of the out-of-plane displacement w near
to the crack tip is studied by means of an asymptotic analysis in the next Section.

4 Asymptotic crack tip fields

The following standard asymptotic expression for out-of-plane displacement w in separate vari-
ables form is considered:

w(r, θ) = rsFs(θ), r → 0, (29)

We are interested in finding the terms of the asymptotic solution (29) corresponding to finite
and non-zero contributions to the J-integral (28) in the limit r → 0. Since the displacement
w should be bounded and symmetrical, it follows immediately that s > 0, and then no zero-
order terms are present in the asymptotic expansion. Substituting the expression (29) in the
generalized J-integral formula (28) and using the following derivative rules which hold for an
arbitrary function f(x, y) = f(r, θ):

f,x = f,r cos θ − f,θ
sin θ

r
, f,y = f,r sin θ + f,θ

cos θ

r
, (30)

we get:

J =
r2s−1

2

∫ π

−π

{

ρv2(sFs cos θ − F
′

s sin θ)
2 cos θ +G

[

(1 + s)FsF
′

s sin θ − (sF 2
s + F

′2
s ) cos θ

]}

dθ +

+
r2s−3

4

∫ π

−π

{

Gℓ2(s2Fs + F
′′

s )
[

(Fs − s(2− s)F
′′

s ) cos θ + 2F
′

s sin θ
]

+ (31)

+
Jv2

2
(2− s)(sFs cos θ − F

′

s sin θ)
[

s(s− (2− s) cos 2θ)Fs + 2(1− s)F
′

s sin 2θ + 2F
′′

s sin2 θ
]

}

dθ,

where the superscript
′

denotes the total derivative respect to the variable θ.
Observing expression (31), in agreement with the results reported in Radi (2008) for the static

case, we deduce that the finiteness of the energy release rate towards the crack tip requires that
s ≥ 3/2 for any non integer number.
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Including higher order terms in the asymptotic expansion in the form
∑

i r
siFsi(θ) and using

this expression in (28), terms of order rsi+sj−1 and rsi+sj−3 where i 6= j are detected. These
terms involve both Fsi and Fsj and can have a non vanishing impact to the value of the energy
release rate. Therefore we need to consider several asymptotic terms in the form of (29) and
analyze the possible correlation between them in the nonlinear functional (28). According with
this discussion and in order to find the terms corresponding to finite and non-zero contributions
to the energy release rate, we assume 1 ≤ s < 3.

It can be easily demonstrated that if |si − sj | < 2, ∀ i 6= j, only the leading order term
of the governing equation (13) can be considered, while if more terms are required with expo-
nents differing by 2 or more than 2, the full equation (13) must be considered in the analysis
(Piccolroaz et al., 2012). As a consequence, assuming 1 ≤ s < 3, we can then keep only the
leading term of the evolution equation (13)

∆(∆w − λ2w,xx) = 0 where λ2 = 2m2h20 =
Jv2

2Gℓ2
. (32)

Introducing the expression (29) in (32), the general asymptotic solution of the equation of
motion has been obtained, the derivation is illustrated in details in the Section containing the
supplementary material. Referring to this general solution, since we are assuming values in the
range 1 ≤ s < 3, the terms corresponding to s = 1, 3/2, 2, 5/2 needs to be considered and the
asymptotic expression for the out of plane displacement w turns out to be:

w(r, θ) = B1r sin θ +B2r
3/2

[

sin
3

2
θ − (1− λ2 sin2 θ)3/4

1 + η

1 + η − λ2
sin

3

2
Φ(θ)

]

+ (33)

+ B3r
2 sin 2θ +B4r

5/2

[

sin
3

2
θ − (1− λ2 sin2 θ)5/4

1 + η

1 + η − λ2
sin

5

2
Φ(θ)

]

+O(r5/2),

where

Φ(θ) = arcsin

( √
1− λ2 sin θ

√

1− λ2 sin2 θ

)

, (34)

and the constants B1, B2, B3 and B4 define the amplitude of each asymptotic term the sum and
thus must to be evaluated according to the boundary conditions (15) and (16).

It has been verified by symbolic calculations that the terms of the (33) corresponding to s = 1
and s = 2, similarly to what has been detected by Radi (2008) and Piccolroaz et al. (2012) for
a stationary crack case do not contribute to the J-integral and to energy release rate. Although
these terms are relevant for evaluating displacement and total shear stress at the crack tip, the
only finite and non-vanishing contribution to the generalized J-integral (28) is associated to the
order s = 3/2 of the asymptotic expression (33), and then the energy release rate is given by:

E = lim
r→0

J =
B2

2Gℓ2

64

∫ π

−π

{(

9H3/2 + 4H
′′

3/2

) [(

4H3/2 − 3H
′′

3/2

)

cos θ + 8H
′

3/2 sin θ
]

+ (35)

+ λ2
(

3H3/2 cos θ − 2H
′

3/2 sin θ
)[

3(1 − 3 cos 2θ)H3/2 − 4H
′

3/2 sin 2θ + 8H
′′

3/2 sin
2 θ
]}

dθ,
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where

H3/2(θ) = sin
3

2
θ − (1− λ2 sin2 θ)3/4

1 + η

1 + η − λ2
sin

3

2
Φ(θ) = (36)

= sin
3

2
θ − 1 + η√

2(1 + η − λ2)

(
√

1− λ2 sin2 θ + 2cos θ
)

√

√

1− λ2 sin2 θ − cos θ.

The proposed procedure, based on the assumption 1 ≤ s < 3 and then on the analysis of
the leading order term of the governing equation (32), can in principle be performed considering
a different range of values of s, as 1 < s ≤ 3, corresponding to terms s = 3/2, 2, 5/2, 3, but
observing the expression (31) and remembering that the other contributions to the J-integral
are of orders rsi+sj−1 and rsi+sj−3 and that s = 1/2 is excluded because finite energy is required,
it is easy to deduce that all terms associated to s > 5/2 do not contribute to the energy release
rate. Therefore we can conclude that s = 3/2 provides effectively the only term contributing to
the J-integral and that the choice of considering the leading term of the governing equation (13)
in the asymptotic analysis is correct for our purpose.

In order to evaluate the energy release rate (35), the constant B2 must be explicitly de-
termined. In the next Section B2 is calculated starting from the asymptotic expansion of the
full-field solution derived in Mishuris et al. (2013) for the same loading conditions (15)-(17) by
means of Wiener-Hopf technique.

5 Explicit evaluation of the energy release rate

In order to derive an explicit expression for the constant B2, we perform the asymptotic analysis
of the Fourier transform of the full-field solution derived in Mishuris et al. (2013) for the same
loading conditions (15)-(17) by means of Wiener-Hopf technique. In the limit |s| → ∞, the
Fourier transforms of stress, couple stress field and displacements assume the following behavior:

t
+
23(s, 0

+) =
FT0Ξ(1 + η − 2h20m

2)

Υ(h0,m, η)
(sℓ)

1/2
+ +O

(

(sℓ)
−1/2
+

)

, Ims > 0, (37)

µ+
22(s, 0

+) =
2iFT0ℓΞ

(

√

1− 2h20m
2 − η

)

(1 + η)

Υ(h0,m, η)
(

1 +
√

1− 2h20m
2
) (sℓ)

−1/2
+ +O

(

(sℓ)−1
+

)

, Ims > 0, (38)

w−(s, 0+) = − 2FT0ℓΞ

GΥ(h0,m, η)
(sℓ)

−5/2
−

+O
(

(sℓ)
−7/2
−

)

, Ims < 0, (39)

where F is a constant determined starting from the the boundary condition (15)1 and applying
the Liouville theorem and:

Ξ =
k+(iℓ/L)

(iℓ/L)
1/2
+

, Υ(h0,m, η) =
1− η2 − 2h20m

2 + 2
√

1− 2h20m
2(1 + η − h20m

2)

1 +
√

1− 2h20m
2

, (40)

10



the explicit expression for the factorization function k+(iℓ/L) is given by Mishuris et al. (2013).
Substituting the (40)(1) into (37) and (39) we obtain:

t
+
23(s, 0

+) =
FT0k+(iℓ/L)

(iℓ/L)
1/2
+

(1 + η − 2h20m
2)

Υ(h0,m, η)
(sℓ)

1/2
+ +O

(

(sℓ)
−1/2
+

)

, Ims > 0, (41)

µ+
22(s, 0

+) =
2iFT0k+(iℓ/L)

(

√

1− 2h20m
2 − η

)

(1 + η)

(iℓ/L)
1/2
+ Υ(h0,m, η)

(

1 +
√

1− 2h20m
2
) (sℓ)

−1/2
+ +O

(

(sℓ)−1
+

)

, Ims > 0,(42)

w−(s, 0+) = − 2FT0ℓk+(iℓ/L)

G(iℓ/L)
1/2
+ Υ(h0,m, η)

(sℓ)
−5/2
−

+O
(

(sℓ)
−7/2
−

)

, Ims < 0. (43)

Further, we consider the following transformation formula (Roos, 1969):

xκ
ft↔ iκ+1Γ(κ+ 1)s−κ−1, with κ 6= −1,−2,−3 . . . , (44)

where Γ is the gamma function and the symbol
ft↔ indicates that the quantities on the two

sides of the (44) are connected by means of unilateral Fourier transform. Applying the (44) to
expressions (41) and (43), we get:

t23(x, 0
+) = −FT0

√
Lk+(iℓ/L)

2
√
π

(1 + η − 2h20m
2)

Υ(h0,m, η)
x−3/2, x > 0, (45)

µ22(x, 0
+) =

2FT0

√
Lk+(iℓ/L)

(

√

1− 2h20m
2 − η

)

(1 + η)

√
πΥ(h0,m, η)

(

1 +
√

1− 2h20m
2
) x−1/2, x > 0, (46)

w(x, 0+) =
8FT0

√
Lk+(iℓ/L)

3
√
πGℓ2Υ(h0,m, η)

(−x)3/2, x < 0. (47)

On the crack surface, for θ = π and y = 0+, the term of order 3/2 of the asymptotic
expression in polar coordinates (33) becomes

w(x, 0+) = B2
2m2h20

1 + η − 2m2h20
(−x)3/2, x < 0, (48)

where the definition r(y = 0+) =
√
x2 = |x| has been used. Equating expressions (47) and (48),

we get:

B2 =
4FT0

√
Lk+(iℓ/L)

3
√
πGΥ(h0,m, η)ℓ2

(

1 + η − 2m2h20
m2h20

)

. (49)

The explicit expression (49) can the be used into the (35) for studying the variation of the
energy release rate in function of the crack tip speed and of the microstructural parameters h0
and η.

In order to check the validity of the obtained results, an alternative expression for the energy
release rate is derived considering the rectangular-shaped contour Γ with vanishing height along
the y-direction and with ε → +0 reported in Fig.1 (Freund, 1998). The Cartesian components of
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the outward unit vector normal to Γ are n = (nx, ny, 0). Considering the moving framework in
Fig.1 with the origin at the crack tip, for the steady-state antiplane crack problem the generalized
J-integral (23) becomes:

J =

∫

Γ
[(W + T )nx − (t13nx + t23ny)w,x − (µ11nx + µ21ny)ϕ1,x − (µ12nx + µ22ny)ϕ2,x] ds =

=

∫

Γ
[(W + T )− t13w,x − (µ11ϕ1,x + µ12ϕ2,x)] dy −

∫

Γ
[t23w,x + (µ21ϕ1,x + µ22ϕ2,x)] dx,(50)

where t13 and t23 are components of the total non-symmetric Cauchy stress tensor, including
both symmetric and skew-symmetric part.

Figure 1: Rectangular-shaped contour around the crack-tip

In order to evaluate the energy release rate, we allow the height of the rectangular path
reported in Fig.1 to vanish. In this limit, the first integral of the (50) is zero and the following
expression for the dynamic energy release rate is derived:

E = −2 lim
ε→+0

{
∫ +ε

−ε
[t23w,x + (µ21ϕ1,x + µ22ϕ2,x)] dx

}

. (51)

It is important to note that anti-symmetry conditions (15) together with boundary conditions
(16) provide that the reduced traction q1 = µ21 is zero along the whole crack line y = 0, where
n = (0,±1, 0). Consequently, the energy release rate (51) becomes:

E = −2 lim
ε→+0

{
∫ +ε

−ε

[

t23(x, 0
+)w,x(x, 0

+) + µ21(x, 0
+)ϕ1,x(x, 0

+) + µ22(x, 0
+)ϕ2,x(x, 0

+)
]

dx

}

=

= −2 lim
ε→+0

{
∫ +ε

−ε

[

t23(x, 0
+)w,x(x, 0

+) + µ22(x, 0
+)ϕ2,x(x, 0

+)
]

dx

}

= −2 lim
ε→+0

{
∫ +ε

−ε

[

t23(x, 0
+)w,x(x, 0

+)− 1

2
µ22(x, 0

+)w,xx(x, 0
+)

]

dx

}

. (52)
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For evaluating the integral (52), solely asymptotic expressions for the traction ahead of
the crack tip t23, the couple stress field µ22, and the displacement w are required. Then, by
substituting equations (45), (46) and (47) in the general formula (52), we finally derive:

E = −2 lim
ε→+0

{

2F 2T 2
0Lk

2
+(iℓ/L)

πGℓ2Υ2(h0,m, η)

[

(1 + η − 2h20m
2)

∫ +ε

−ε
x
1/2
−

x
−3/2
+ dx−

−

(

√

1− h20m
2 − η

)

(1 + η)
(

√

1− h20m
2 + 1

)

∫ +ε

−ε
x
−1/2
−

x
−1/2
+ dx











(53)

where x
1/2
−

, x
−1/2
−

and x
−3/2
+ , x

−1/2
+ are distributions of the bisection type (Arfken and Weber,

2005). For any real α with the exception of α = 1, 2, 3, . . . , this particular type of distributions
is defined as follows:

xα+ =

{

|x|α, for x > 0,
0, for x < 0.

, xα
−
=

{

0, for x > 0,
|x|α, for x < 0.

Moreover, the product of distributions inside the integral in (53) is evaluated through the ap-
plication of Fisher’s theorem (Fischer, 1971), that leads to the operational relation:

(x−)
α(x+)

−1−α = − πδ(x)

2 sin(πα)
, with α 6= −1,−2,−3 . . . , (54)

where δ(x) is the Dirac delta distribution. Then, by using the relation (54) into (53) and consider-
ing the fundamental property of the Dirac delta distribution

∫ +ε
−ε δ(x)dx = 1 (Arfken and Weber,

2005), we finally get:

E =
2F 2T 2

0Lk
2
+(iℓ/L)

Gℓ2Υ2(h0,m, η)

(

2(1 + η − h20m
2)
√

1− 2h20m
2 + (1− 2h20m

2 − η2)
√

1− 2h20m
2 + 1

)

=
2F 2T 2

0Lk
2
+(iℓ/L)

Gℓ2Υ(h0,m, η)
.

(55)
Using this alternative procedure, we have derived the explicit expression (55) for the energy

release rate corresponding to a Mode III steady state propagating crack in a couple stress elastic
material. Equation (55) can be compared with the energy release rate associate to an antiplane
steady state crack in a classical elastic material, derived assuming the same loading configuration
(17):

Ecl =
T 2
0

GL

1√
1−m2

, (56)

the ratio between the two expressions (55) and (56) is given by:

E
Ecl

=
2F 2L2k2+(iℓ/L)

ℓ2Υ(h0,m, η)

√

1−m2. (57)

The analytical expression (55) has been proved to be equivalent to (35) by means of several
numerical examples. Indeed, both expressions (35) and (55) provide the same results, which are
reported in the next Section.
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6 Results and discussion

In this Section, the variation of the energy release rate is analyzed applying the classical Griffith
criterion (Willis, 1967) in order to study the propagation stability. The results are compared
with those detected using the tmax criterion, adopted by Mishuris et al. (2013).

The normalized variation of the energy release rate versus the crack tip speed m is reported
in Fig. 2 for the same value of the ratio L/ℓ = 10, three different values of η = {0, 0.9, −0.9}
and four different values of the rotational inertia h0 = {0.01, 0.6, 0.707, 0.8}. The range of the
normalized crack tip velocity has been chosen in such a way that the propagation is subsonic and
the conditions of validity of the full-field solution obtained in Mishuris et al. (2013) and used for
evaluating the J-integral constant are satisfied. A similar behavior is observed for all different
set of parameters: the energy release rate is initially constant for small values of the crack tip
speed m ≤ 0.3, then increases monotonically until its limiting value. For small values of h0 and
η, the limit value of the energy release rate corresponds to m = 1, while as the microstructural
parameters increases the limit value of the crack tip speed becomes smaller than the shear waves
speed cs, and thus m < 1.
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Figure 2: Variation of the energy release rate as a function of the normalized crack tip speed m.
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Figure 3: Variation of the ratio E/Ecl as a function of the normalized crack tip speed m.
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On the basis of the Griffith criterion (Freund, 1998), crack initiation requires that the energy
release rate achieves a critical value Ec = 2γ, where γ is the energy needed to form a unit of
new material surface, and is a constant depending only by the properties of the medium. In our
case, once this critical value for the crack initiation is achieved, the energy release rate always
increases in function of the velocity, this means that if the applied loading provides the energy
necessary for starting the fracture process, the crack has enough energy to accelerate rapidly
up to the limiting values of the speed (Willis, 1971; Obrezanova et al., 2002). This implies
that, if we analyze the results shown in Fig. 2 by means of Griffith criterion, the steady state
propagation of a Mode III crack in couple-stress elastic material can be considered unstable for
any value of the rotational inertia h0 and of η.

The ratio between the energy release rate in couple stress materials and the energy release
rate in classical elastic materials (57) is plotted in Fig. 3 as a function of the normalized crack
tip speed m. For small values of the rotational inertia, this ratio decreases as m tends to 1. This
is due to the fact that for m = 1, the energy release rate corresponding to a classical elastic
material (56) diverges, while in presence of couple stress it has a finite limiting value. Differently,
for large values of h0, the ratio increases monotonically until a limiting value corresponding to
m < 1 and thus to a crack tip speed smaller than cs. Therefore, in order to propagate the
crack at constant velocity, more energy than in a classical elastic material must be provided by
the loading if the contribution of the rotational inertia is relevant. Observing Fig. 3, we can
also note that in the static limit, namely as m tends to zero, the ratio E/Ecl is close to one for
η = −1, this behavior is in agreement with the results reported by Radi (2008), which illustrate
that for η = −1 the solution approaches the classical elastic case.

In Mishuris et al. (2013) the tmax criterion (Georgiadis, 2003) is applied to the same crack
problem. This alternative criterion states that the maximum total shear stress tmax

23 possesses
a critical level τC at which the crack starts propagating. The behavior of tmax

23 as a function of
the crack tip speed has been studied extensively for several sets of microstructural parameters.
For each values of the ratio η, it has been individuated a critical value of the rotational inertia
h0c, such that for h0 > h0c the maximum shear stress increases very rapidly in function of m
and becomes unbounded at a crack-tip speed lower than the shear wave speed cs. In these cases
the crack propagation turns out to be unstable and a limit speed of propagation vc < cs is
individuated. For h0 < h0c, t

max
23 decreases instead as the crack speed increases and tends to

zero as m approaches its limiting value, suggesting the occurrence of stable crack propagation at
velocities sufficiently lower than the shear wave speed. The critical value of the rotational inertia
is reported as a function of η in Fig.4 (blue line). The limit value η = −1 corresponds to h0c = 0,
then in this case the propagation turns out to be unstable for any value of the rotational inertia,
while as η increases h0c grows, and the range of the rotational inertia associated to stable cracks
propagation becomes larger. Therefore, the present analysis shows that if the maximum total
shear stress criterion is adopted, a stabilizing effect of the crack propagation is provided as the
characteristic ratio η increases and then the contribution of the microstructures effect becomes
relevant. Differently, for negative values of η near to the limit case η = −1, crack propagation
is detected to be unstable as the rotational inertia becomes not negligible.

The stabilizing effect is not detected applying the Griffith criterion, according to which the
propagation is unstable regardless of the values of η and h0. As a consequence, assuming this
criterion, the critical value of the rotational inertia is zero for all values of η (dashed line in
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Fig. 4), and the fracture is unstable for each set of microstructural parameters. This is due to
the fact that the energy release rate is evaluated using the term of order r3/2 of the asymptotic
displacement field, corresponding to the singular shear stress term of order r−3/2. As it has been
illustrated by many studies both in classical elastic materials (Du and Hancock, 1991; Du et al.,
1991) and in couple stress (Radi and Gei, 2004; Radi, 2008), this singular contribution dominates
very near to the crack tip, but it displays an unphysical negative shear stress ahead of the crack
tip. Moreover, it is not sufficient to describe accurately the physical behavior of the stresses
at a characteristic length from the crack tip where the higher order terms of the expansions
become important. In particular, the second term, which is associated to the linear term of the
displacement and is commonly known as T-stress, can influence significantly the processes of
crack initiation and propagation in many physical situations (Tvergaard and Hutchinson, 1994).
In this cases, the critical stress intensity factor criterion and thus the connected Griffith crite-
rion (Freund, 1998) are insufficient for describing accurately the crack extension and stability.
Alternative two-parameters fracture criteria requiring the achievement of a critical value for
both the stress intensity factor and the T-stress has been proposed for classical elastic materials
(Hancock and Du, 1991; Smith et al., 2006) and can be extended to couple stress.

tmax criterion

Griffith criterion

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2
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0.6

0.8

Η

h 0
c

Figure 4: Critical value of the rotational inertia h0c as a function of the ratio η.

In couple stress materials, as the distance from the crack tip increases the discrepancy be-
tween the stresses physical behavior and the singular leading term of the asymptotic is even
more relevant respect to the classical elastic case (Radi, 2008). Therefore, the contribution of
the higher order term in the asymptotic shear stress, which does not affect the energy release
rate, is relevant. Differently, in Mishuris et al. (2013) the total shear stress is evaluated by means
of the full-field solution, that describes correctly the behavior of displacement and stresses on
the whole crack line and takes fully into account the action of the microstructures.
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Figure 5: Variation of the dynamic energy release rate and of the ratio E/Ecl as a function of η plotted for

m = 0.8.
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Figure 6: Variation of the dynamic energy release rate and of the ratio E/Ecl as a function of η for the case

m = 0, corresponding to the static limit.

Fig. 5 shows that for a fixed value of the crack tip speed, the energy release rate slightly
increases its magnitude for large values of h0. As a consequence, for large values of the rotational
inertia, a greater flux of energy at the crack tip is detected, and thus crack initiation and propa-
gation are favored. Moreover, in Fig. 5 we can also observe that ERR and the ratio E/Ec decrease
as η increase. In particular, the ratio E/Ec is almost one for η = −1, and then it decreases. As
it is reported in Fig. 6, this behavior is observed also in the static case, corresponding to the
limit m = 0. This confirms the results illustrated in Radi (2008) and can be explained with
the fact that for large values of η, associated with large values of the characteristic length in
torsion, the toughness of the material increases, and thus less energy is provided at the crack
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tip and a shielding effect due to microstructures is detected. It is important to note that in the
static case the energy release rate is independent by the value of h0, because the rotational iner-
tia appears only in the dynamical terms of the evolution equation (13) and of the J-integral (28).

7 Conclusions

A general expression for the J-integral associated to dynamic steady-state cracks subjected
to antiplane loading in couple-stress elastic materials has been derived. The effects of both
finite characteristics lengths as well as rotational inertia are included in the analysis. The
generalized J-integral has been demonstrated to be path independent for steadily propagating
cracks. Asymptotic displacements and stress fields have been derived and used for evaluating
the dynamic energy release rate. Surprisingly, the dependence of the energy release rate by the
microstructural parameters looks less than the authors expectations. However, for large values
of the characteristic length in torsion the ERR decreases, and thus less energy is provided at the
crack tip and a shielding effect due to microstructures is detected.

The stability of the propagation has been studied by applying the energy-based Griffith
criterion (Willis, 1967, 1971; Obrezanova et al., 2002). The propagation turns out to be unstable
for each value of the characteristic length in torsion and of the rotational inertia. This result
appears to contrast with those detected in Mishuris et al. (2013), where the maximum total
shear stress criterion has been adopted, and a stabilizing effect in correspondence of relevant
microstructural contributions is shown. In the authors’ opinion, the discrepancy is due to the fact
that the energy release rate depends only on a single term of the asymptotic displacement field,
corresponding to the singular leading order term of the stresses. The singular stress dominates
in proximity of the crack tip, whereas as the distance from the crack tip increases the effects of
higher order asymptotic terms which do not contribute to the J-integral become relevant. It is
important to note that analogous results has been detected by comparing the ERR and the T-
stress criterion in classical elasticity (Du et al., 1991; Smith et al., 2006). Moreover, the presence
of the microstructures affects stresses and displacement up to a distance from the crack tip of the
order of 5-10 times the characteristic length ℓ (Radi, 2008), and thus cannot be described by the
sole leading order term. Differently, the total shear stress is calculated by means of the full-field
solution, that takes fully into account the microstructural contributions. Therefore, in order
to study cracks propagation stability in elastic media with microstructures, fracture criteria
considering also higher order terms must be developed and validated by means of experimental
analysis. The tmax criterion may represent one of the possible alternative methods that could
give relevant results concerning microstructural effects on crack propagation stability.
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Supplementary Material

In this Section a general asymptotic solution for the evolution equation (32) is derived. Equation
(32) can be split in the following two PDEs

∆w = 0, ∆w − λ2w,xx = 0. (58)

Substituting the asymptotic expression for the displacement (29) into (58)1, and using the deriva-
tive rules (30), the following ODE for the unknown function Fs(θ) is derived:

F
′′

s (θ) + s2Fs(θ) = 0. (59)

This equation admits the solutions providing:

wI(r, θ) = rs[C1 cos(sθ) + C2 sin(sθ)], (60)

for any s > 0.
Equation (58)2 can be reduced in the form (58)1 by considering the linear coordinate trans-

formation
X = x, Y = y

√

1− λ2. (61)

Let us denote the transformed coordinates as X = R cos Φ and Y = R sinΦ, where:

R(r, θ) =
√

X2 + Y 2 =
√

X2 + (1− λ2)Y 2 = r
√

1− λ2 sin2 θ, (62)

Φ(θ) = arctan

(

Y

X

)

= arcsin

( √
1− λ2 sin θ

√

1− λ2 sin2 θ

)

. (63)

Then, the general solution of the equation (58)2 is given by

wII(r, θ) = Rs[C3 cos(sΦ(θ)) + C4 sin(sΦ(θ))], (64)

for any s > 0.
Finally, the general solution of the governing equation (32) is obtained by the sum of wI and

wII , given respectively by (60) and (64). By using expression (63), we get:

w(r, θ) = rs[C1 cos(sθ) + C2 sin(sθ) + (1− λ2 sin2 θ)s/2(C3 cos(sΦ(θ)) + C4 sin(sΦ(θ)))]. (65)

Since the asymptotic expansion of the loading function (17) contains only integer powers of
r, for non-integer values of the exponent s, which in our case means for s 6= 1, 2, the boundary
conditions (15) at θ = 0 and (16) at θ = π yield the following linear and homogeneous system
for the unknown constants C1, C2, C3 and C4, equivalent to that derived for the traction-free
problem (Radi and Gei, 2004; Radi, 2008):

C1 + C3 = 0,

s(s− 1)[(1 + η)C1 + (1 + η − λ2)C3] = 0,

s(s− 1)
{

[(1 + η)C1 + (1 + η − λ2)C3] cos(sπ) + [(1 + η)C2 + (1 + η − λ2)C4] sin(sπ)
}

= 0,

s(s− 1)(s − 2)
{

[(1 + η − λ2)C2 +
√
1− λ2(1 + η)C4] cos(sπ)

−[(1 + η − λ2)C1 +
√
1− λ2(1 + η)C3] sin(sπ)

}

= 0.

(66)
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Then from (66) it necessarily follows that C1 = C3 = 0 and

[(1 + η)C2 + (1 + η − λ2)C4] sin(sπ) = 0,

[(1 + η − λ2)C2 +
√
1− λ2(1 + η)C4] cos(sπ) = 0.

(67)

Eqs. (67) admit a non trivial solution for sin 2πs = 0, namely for s = n/2 where n ∈ N. In
particular, for n odd one obtains from (67)1:

C4 = − 1 + η

1 + η − λ2
C2, (68)

and consequently from (65)

w(r, θ) = C2r
n/2

[

sin
(n

2
θ
)

− 1 + η

1 + η − λ2
(1− λ2 sin2 θ)n/4 sin

(n

2
Φ(θ)

)

]

. (69)

For n even, from (67)2 it follows:

C4 = − 1 + η − λ2

√
1− λ2(1 + η)

C2, (70)

and consequently from (65)

w(r, θ) = C2r
n/2

[

sin
(n

2
θ
)

− 1 + η − λ2

√
1− λ2(1 + η)

(1− λ2 sin2 θ)n/4 sin
(n

2
Φ(θ)

)

]

. (71)

Since we are considering values in the range 1 ≤ s < 3, the terms corresponding to s =
1, 3/2, 2, 5/2 need to be included in the asymptotic solution. The terms of the order s = 3/2
and s = 5/2 possess the form (69), while the terms s = 1, 2 correspond to degenerate cases of
the equation (32), and need to be treated separately.

For s = 1, the general solution of the equation (32) may be found by solving the problem

∆w = r−1(1− λ2 sin2 θ)−1/2(C3 cos Φ(θ)− C4 sinΦ(θ)), (72)

namely

∆w = r−1(1− λ2 sin2 θ)−1(C3 cos θ − C4
√

1− λ2 sin θ), (73)

By using the method of variation of the parameters, one can find the following solution of
equation (73) in the separate variable form (29)

w(r, θ) =
r

2λ2

{[

C1 + C3 log(1− λ2 sin2 θ) + 2C4(Φ− θ
√

1− λ2)
]

cos θ+

+
[

C2 − 2C3(Φ
√

1− λ2 − θ) + C4

√

1− λ2 log(1− λ2 sin2 θ)
]

sin θ
}

. (74)

The boundary conditions (15) and (16) necessarily imply that C1 = C3 = C4 = 0, so that
the corresponding solution reduces to

w(r, θ) = C2r sin θ, (75)
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where C2 depends by the amplitude of the loading (17) and also by the constant associated to
the term s = 3, that is neglected in our analysis.

For s = 2, the general solution of the equation (32) may be found by solving the problem

∆w = C3 + C4Φ(θ), (76)

namely

∆w = C3 +C4 arcsin

( √
1− λ2 sin θ

√

1− λ2 sin2 θ

)

, (77)

By using the method of variation of the parameters, one can find the following solution of
equation (77) in the separate variable form (29)

w(r, θ) = r2
{

C1 cos 2θ + C2 sin 2θ +
C3

4
+ (78)

+
C4

2λ2

[

(λ2 sin2 θ + cos 2θ)Φ +
√

1− λ2

(

sin 2θ log

√

2(1 − λ2 sin2 θ)− θ cos 2θ

)]}

.

The boundary conditions (15) and (16) necessarily imply that C1 = C3 = C4 = 0, so that
the corresponding solution reduces to

w(r, θ) = C2r
2 sin 2θ. (79)

where C2 depends by the amplitude of the loading (17) and also by the constant associated to
the term s = 4, that is neglected in our analysis.

Appendix A

In this Appendix, we demonstrate that the dynamic J-integral expression (23) for a Mode III
steady-state propagating crack in couple stress elastic materials is path independent.

Considering a closed oriented path formed by two crack tip contours Γ1 and Γ2 and by the
segments of the crack faces of length d that connect the ends of these contours, the energy
flux integral corresponding to this entire closed path Γtot for a Mode III steady state crack in
couple-stress materials is given by

F (Γtot) = F (Γ2)− F (Γ1) = v

∮

Γtot

[

(W + T )nx − tTn · ezw,x − µ
Tn · ϕ,x

]

ds, (80)

then from the definition (23) we derive

J (Γtot) = J (Γ2)− J (Γ1) =

∮

Γtot

[

(W + T )nx − tTn · ezw,x − µ
Tn ·ϕ,x

]

ds, (81)

where the notation J (Γ1) and J (Γ2) denotes that the dynamic J-integral (23) is evaluated
respect to the crack tip contours Γ1 and Γ2, respectively. Applying the divergence theorem to
the (81) we obtain and remembering that nx = n · ex, we obtain

JΓ2)− J (Γ1) =

∫

Atot

∇ ·
[

(W + T )ex − tTezw,x − µ
T
ϕ,x

]

dA, (82)
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where Atot is the area within the closed area. For the antiplane steady-state problem the strain
elastic energy density and the kinetic energy density are given by

W =
1

2
(σ13w,x + σ23w,y + µ11ϕ1,x + µ12ϕ2,x + µ21ϕ1,y + µ22ϕ2,y), (83)

T =
v2

2
(ρw2

,x + Jϕ2
1,x + Jϕ2

2,x), (84)

the first term of the integral (82) is the given by

∇ · [(W + T )ex] = (W + T ),x = v2 (ρw,xxw,x + Jϕ1,xxϕ1,x + Jϕ2,xxϕ2,x) +

+
1

2
(σ13,xw,x + σ13w,xx + σ23,xw,y + σ23w3,yx) +

+
1

2
(µ11,xϕ1,x + µ11ϕ1,xx + µ12,xϕ2,x + µ12ϕ2,xx+ (85)

+ µ21,xϕ1,y + µ21ϕ1,yx + µ22,xϕ2,y + µ22ϕ2,yx) .

Taking into account the dynamic equilibrium conditions (5), the second term can be written as
follows

∇ · (tTezw,x) = (∇ · tT ) · ezw,x + tT · ∇w,x =

= ρüw,x + (σ13 + τ13)w,xx + (σ23 + τ23)w,yx = (86)

= ρv2w,xxw,x + (σ13 + τ13)w,xx + (σ23 + τ23)w,yx,

while the third

∇ · (µT
ϕ,x) = (∇ · µT ) ·ϕ,x + µ

T · ∇ϕ,x =

= (Jϕ̈1 − 2τ23)ϕ1,x + (Jϕ̈2 + 2τ13)ϕ2,x + µ11ϕ1,x + µ12ϕ2,x + µ21ϕ1,y + µ22ϕ2,y = (87)

=
(

Jv2ϕ1,xx − 2τ23
)

ϕ1,x +
(

Jv2ϕ2,xx + 2τ13
)

ϕ2,x + µ11ϕ1,x + µ12ϕ2,x + µ21ϕ1,y + µ22ϕ2,y.

Substituting (85), (87) and (87) into the integral (82) and writing ϕ1 and ϕ2 as functions of the
displacement by means of relations (1)(3,4), we obtain

J (Γ2)−J (Γ1) =

∫

Atot

[

1

2

(

σ13,xw,x + σ23,xw,y +
1

2
(µ11,xw,yx − µ12,xw,xx + µ21,xw,yy − µ22,xw,xy)

)

−

− 1

2

(

σ13w,xx + σ23w,yx +
1

2
(µ11w,yxx − µ12w,xxx + µ21w,yyx − µ22w,xyx)

)]

dA, (88)

finally, introducing into the (88) expressions (8) and (9), defining the stress and couple-stress
tensors in function of the derivatives of the displacement, we get:

J (Γ2)− J (Γ1) =
Gℓ2

2

∫

Atot

[(w,xxw,xxx + w,yyw,yyx − η (w,yyxw,xx + w,xxxw,yy))−

− (w,xxw,xxx + w,yyw,yyx − η (w,yyxw,xx + w,xxxw,yy))] dA = 0. (89)

We have demonstrated that for a Mode III steady state crack propagation in couple-stress
elastic materials the difference between the energy release rate calculated considering two dif-
ferent paths around the crack tip is zero, as a consequence we can conclude that the J-integral
expression (23) is path independent.
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Appendix B

In this Appendix we demonstrate that the two alternative expressions for the J-integral (56),
one of which is in function of the tractions and the other of the reduced tractions, are equivalent.
The equivalence of the two forms is demonstrated for a general three-dimensional steady state
crack problem, and the expressions (56), valid for the Mode III, are derived as a particular case.

On the basis of general expression for the energy flux (19), for a steady state three-dimensional
crack propagating in couple stress elastic materials the J-integral is defined as follows:

J =

∫

Γ

[

(W + T )nx − tTn · u,x + µ
Tn ·ϕ,x

]

ds. (90)

An alternative expression for this integral is given in function of the reduced tractions p and
of the couple stress tractions q (Georgiadis, 2003; Gourgiotis et al., 2011):

J =

∫

Γ

[

(W + T )nx − p · u,x − q ·ϕ,x

]

ds. (91)

We now demonstrate that expressions (90) and (91) are equivalent. Remembering the definition
of the reduced tractions and of the couple stress tractions (4), the following relations are derived:

p · u,x = tTn · u,x +
1

2
(∇µnn × n) · u,x

q ·ϕ,x = µ
Tn ·ϕ,x − µnnn · ϕ,x. (92)

Making the difference between expressions (90) and (91), we obtain:

1

2

∫

Γ
[(∇µnn × n) · u,x] ds−

∫

Γ
(µnnn ·ϕ,x)ds =

=
1

2
εijk

∫

Γ
(µnn,injuk,x) ds−

1

2
εkji

∫

Γ
(µnnnkui,xj) ds, (93)

where εijk and εkji are elements of the Levi-Civita tensor, and the components of the rotations
vector ϕ have been expressed in function of the displacements according to kinematic compat-
ibility conditions introduced by Koiter (1964) and reported in Section 2 for the antiplane case.
Taking into account the permutation properties of the Levi-Civita tensor elements εkji = εjik
and εijk = −εkji, the (93) becomes:

−1

2
εkji

∫

Γ
(µnn,injuk,x) ds −

1

2
εkji

∫

Γ
(µnnnkui,xj) ds =

= −1

2
εkji

∫

Γ
(µnn,injuk,x) ds −

1

2
εjik

∫

Γ
(µnnnjuk,xi) ds =

= −1

2
εkji

∫

Γ
(µnn,injuk,x + µnnnjuk,xi) ds = −1

2

∫

Γ
njεkji (µnnuk,x),i ds. (94)
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Defining the vector a = µnnu,x of components ak = µnnuk,x, the (94) can be rewritten as:

− 1

2

∫

Γ
njεkjiak,ids = −1

2

∫

Γ
njεjikak,ids = −1

2

∫

Γ
njbjds, (95)

where bj = εjikak,i are elements of the vector b = rota. Applying the divergence theorem, it
follows that:

− 1

2

∫

Γ
b · nds = −1

2

∫

A
(∇ · b) dA = −1

2

∫

A
[∇ · (∇× a)] dA = 0. (96)

We have demonstrated that the difference between the two alternative forms of the J-integral
(90) and (91) is zero, then expressions (90) and (91) are equivalent. For a Mode III crack, using
the definition of the out-of-plane displacement (12), the (90) becomes:

J =

∫

Γ

[

(W + T )nx − tTn · ezw,x − µ
Tn ·ϕ,x

]

ds. (97)

In the same antiplane case, the following relations are derived:

p · u,x = p3 · w,x = (p · ez)∇w · ex, (98)

q · ϕ,x = q1ϕ1,x + q2ϕ2,x = [(∇ϕ)Tq] · ex, (99)

then, substituting these expressions in equation (91), we finally obtain the second form for the
J-integral (24):

J =

∫

Γ

[

(W + T )n− p · ez∇w − (∇ϕ)Tq
]

· exds (100)

Appendix C

In this Appendix we derive the expression (56) for the energy release rate corresponding to a
Mode III steady state propagating crack in a classical isotropic elastic material. For antiplane
dynamical problems in classical elasticity the equation of motion (11) becomes

G∆u3 = ρü3. (101)

Since we are interested in studying steady state crack propagation along x1−axis, we perform
the trasformation u3(x1, x2, t) = w(x, y) where x = x1 − vt, y = x2, (it is the same substitution
illustrated by expression (12)), and the (101) then becomes:

(1−m2)w,xx + w,yy = 0, (102)

where m = v/cs and cs =
√

G/ρ. The Cauchy stresses are given by

σ13 = Gw,x, σ23 = Gw,y. (103)

The following conditions, equivalent to that imposed for couple stress materials (see expres-
sions (15) and (16)), are assumed on the crack surface, at y = 0:

σ23(y = 0) = −τ(x), −∞ < x < 0, (104)

w(y = 0) = 0, 0 < x < +∞, (105)
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where the same loading configuration considered for couple stress materials is applied in the
crack faces:

τ(x) =
T0

L
ex/L, x < 0. (106)

An exact solution of the boundary value problem formulated will be obtained by means of
Fourier transform and Wiener-Hopf technique. The direct and inverse Fourier transform of an
arbitrary function f(x) is defined as follows:

f(s, y) =

∫ +∞

−∞

f(x, y)eisxdx, f(s, y) =
1

2π

∫

L
f(s, y)e−isxds, (107)

where L denotes the inversion path within the region of analyticity of the function f(s, y) in the
compx s−plane. Trasforming the evolution equation (102) we obtain the following ODE:

w
′′ − s2(1 −m2)w = 0, (108)

where the prime symbol
′

denotes the total derivative respect to y. The equation (108) possesses
the following general solution that is required to be bounded as y → +∞:

w(s, y) = B(s)e−α(s)y, (109)

where α(s) =
√

s2(1−m2). The transformed stresses are given by:

σ13 = −isGw, σ23 = Gw
′

. (110)

The Fourier transforms of the unknown stress ahead of the crack tip σ23(x > 0, y = 0) and
of the crack faces displacements w(x < 0, y = 0) are defined as follows:

Σ+
23(s) =

∫ +∞

0
σ23(x, y = 0)eisxdx, (111)

σ23(x, y = 0) =
1

2π

∫

D
Σ+
23(s)e

−isxds, x > 0, (112)

and

W−(s) =

∫ 0

−∞

w(x, y = 0)eisxdx, (113)

w(x, y = 0) =
1

2π

∫

D
W−(s)e−isxds, x < 0, (114)

where the inversion path is assumed to lie inside the region of analyticity of each transformed
function. The transformed stress Σ+

23(s) is analytic and defined in the lower half complex
s−plane, Ims < 0, whereas the transformed displacement W−(s) is analytic and defined in
the upper half complex s−plane, Ims > 0.

Taking into account the (109), and substituting this expression into the (110)(2), in the limit
y → 0 we obtain:

B(s) = W−(s), Σ+
23(s) = −α(s)GW−(s). (115)
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As a consequence, equation (115) together with the condition (104) provides the following
Wiener-Hopf equation connecting the two unkown functions Σ+

23(s) and W−(s):

Σ+
23(s)− τ−(s) = −s

1/2
+ s

1/2
−

νGW−(s), (116)

where ν =
√
1−m2, τ−(s) is the Fourier transform of the loading function (106), defined in the

lower half complex s−plane

τ−(s) =

∫ 0

−∞

τ(x)eisxdx =
T0

1 + isL
, (117)

and the function
√
s2 is factorized as follows (Mishuris et al., 2013):

√
s2 = s

1/2
+ s

1/2
−

, (118)

where the functions s+ and s− are analytic in the upper and in the lower half plane, respectively.
Equation (116) can then be rewritten as

Σ+
23(s)

s
1/2
+

= −s
1/2
−

νGW−(s) +
T0

(1 + isL)s
1/2
+

. (119)

The second term in the right side of the Wiener-Hopf equation (119) can be represented as

Λ(s) ≡ T0

(1 + isL)s
1/2
+

= Λ+(s) + Λ−(s), (120)

where

Λ+(s) =
T0

1 + isL

[

1

s
1/2
+

− 1

(i/L)
1/2
+

]

, Λ−(s) =
T0

1 + isL

[

1

(i/L)
1/2
+

]

, (121)

and Λ+(s) is analytic function in the upper half plane, while Λ−(s) is an analytic function in
the half plane Ims < iL. Using decomposition (120), the Wiener-Hopf equation (119) becomes

Σ+
23(s)

s
1/2
+

− Λ+(s) = −s
1/2
−

νGW−(s) + Λ−(s) ≡ E(s). (122)

The functional equation (122) defines the function E(s) only in the real line. In order to
evaluate this function, it is first necessary to examine the asymptotic behavior of the functions
Σ+
23(s) and W−(s). It has been demonstrated that for x → 0± the stress and the displacement

along the crack faces exhibit the following behavior:

σ23(x, y = 0) = O(x−1/2) as x → 0+, (123)

w(x, y = 0) = O(x1/2) as x → 0− . (124)

Following the same procedure illustrated for couple stress materials, expressions (123) and (124)
can be transformed by means of formula (44) applying Abel-Tauper type theorems (Roos, 1969):

Σ+
23(s) = O(s−1/2) as |s| → ∞ with Ims > 0, (125)

W−(s) = O(s−3/2) as |s| → ∞ with Ims < 0. (126)
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Considering the asymptotic behavior of Σ23 and W+ and observing expressions (121), we
note that the first member of the Wiener-Hopf equation (122) is a bounded analytic function
for Ims > 0 that is zero as |s| → ∞, whereas the second member is a bounded analytic function
for Ims < 0 that is also zero as |s| → ∞. Then, for the theorem of analytic continuation, the
two members define one and the same analytic function E(s) over the entire complex s−plane.
Moreover, Liouville’s theorem leads to the conclusion that E(s) = 0. As a consequence, the
transformed shear stress and displacement are given by:

Σ+
23(s) = Λ+(s)s

1/2
+ , Ims > 0, (127)

W−(s) =
Λ−(s)

νGs
1/2
−

, Ims < 0. (128)

Evaluating the asymptotic leading term |s| → ∞ of these expressions, we get:

Σ+
23(s) = T0(i/L)

1/2
+ s

−1/2
−

+O(s−1) as |s| → ∞ with Ims > 0, (129)

W−(s) = −T0(i/L)
1/2
+

νG
s
−3/2
−

+O(s−2) as |s| → ∞ with Ims < 0, (130)

applying the transformation formula (44) to the (129) and (130) we finally obtain:

σ23(x, y = 0) =
T0√
πL

x−1/2 as x → 0+, (131)

w(x, y = 0) =
2T0

νG
√
πL

(−x)1/2 as x → 0− . (132)

The shear traction expression (131) can then be used for calculating the stress intensity
factor:

Kcl
III = lim

x→0

√
2πxσ23(x, y = 0) =

√

2

L
T0. (133)

The dynamic J-integral for an antiplane steady state propagating crack is evaluated using
the (131) and (132) and performing the same procedure illustrated for couple stress materials,
choosing a rectangular shaped path surrounding the tip and applying the Fisher theorem:

Ecl =
T 2
0

νGL
=

T 2
0

GL

1√
1−m2

. (134)
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