
Aberystwyth University

Dynamic energy release rate in couple-stress elasticity
Morini, L.; Piccolroaz, A.; Mishuris, G.

Published in:
International Symposium on Dynamic Deformation and Fracture of Advanced Materials (D2FAM 2013)

DOI:
10.1088/1742-6596/451/1/012014

Publication date:
2013

Citation for published version (APA):
Morini, L., Piccolroaz, A., & Mishuris, G. (2013). Dynamic energy release rate in couple-stress elasticity. In
International Symposium on Dynamic Deformation and Fracture of Advanced Materials (D2FAM 2013) (Journal
of Physics Conference Series; Vol. 451). IOP Publishing. https://doi.org/10.1088/1742-6596/451/1/012014

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 28. Jun. 2022

https://doi.org/10.1088/1742-6596/451/1/012014
https://pure.aber.ac.uk/portal/en/persons/gennady-mishuris(06aa6945-4ad6-4653-ab4a-c43874c9fc95).html
https://pure.aber.ac.uk/portal/en/publications/dynamic-energy-release-rate-in-couplestress-elasticity(466bd7bd-5a2f-492b-9fe0-8e1265d538df).html
https://doi.org/10.1088/1742-6596/451/1/012014


This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 144.124.41.35

This content was downloaded on 30/09/2014 at 09:00

Please note that terms and conditions apply.

Dynamic energy release rate in couple-stress elasticity

View the table of contents for this issue, or go to the journal homepage for more

2013 J. Phys.: Conf. Ser. 451 012014

(http://iopscience.iop.org/1742-6596/451/1/012014)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/451/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Dynamic energy release rate in couple-stress

elasticity
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2Institute of Mathematical and Physical Sciences,
Aberystwyth University, Ceredigion SY23 3BZ, Wales, U.K.

E-mail: lorenzo.morini@unitn.it

Abstract. This paper is concerned with energy release rate for dynamic steady state crack
problems in elastic materials with microstructures. A Mode III semi-infinite crack subject
to loading applied on the crack surfaces is considered. The micropolar behaviour of the
material is described by the theory of couple-stress elasticity developed by Koiter. A general
expression for the dynamic J-integral including both traslational and micro-rotational inertial
contributions is derived, and the conservation of this integral on a path surrounding the crack
tip is demonstrated.

1. Introduction
The explicit evaluation of the energy release rate and the analysis of its variation in function
of the microstructural parameters and of the crack velocity are crucial issues for studying crack
propagation stability in couple stress elastic materials [11]. For this reason, a general expression
for the dynamic J-integral associated to a semi-infinite Mode III steady-state crack is obtained,
and the energy release rate is derived by means of the conservation of this integral. A general
procedure for the explicit evaluation of the J-integral, considering a rectangular-shaped contour
surrounding the crack tip [3, 4, 5], is also illustrated.

2. Problem formulation
A Cartesian coordinate system (0, x1, x2, x3) centred at the crack-tip at time t = 0 is assumed.
The micropolar behavior of the material is described by the indeterminate theory of couple stress
elasticity [6]. The non-symmetric Cauchy stress tensor t can be decomposed into a symmetric
part σ and a skew-symmetric part τ , namely t = σ + τ . The reduced tractions vector p and
couple stress tractions vector q are defined as

p = tTn+
1

2
∇µnn × n, q = µTn− µnnn, (1)

where µ is the couple stress tensor, n denotes the outward unit normal and µnn = n · µn. For
the dynamic antiplane problem, the conditions of dynamic equilibrium of forces and moments,
taking into condideration rotational inertia, and neglecting body forces and body couples, write

σ13,1 +σ23,2 + τ13,1 + τ23,2 = ρü3, µ11,1 +σ21,2 + 2τ23 = Jϕ̈1, µ12,1 +σ22,2− 2τ13 = Jϕ̈2, (2)
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where ϕ1 and ϕ2 are components of the rotations vector, defined as:

ϕ1 =
1

2
u3,2, ϕ2 = −1

2
u3,1, (3)

ρ is the mass density and J is the rotational inertia. The stresses and couple stresses can be
expressed in terms of the out-of plane displacement u3 [11, 12]:

σ13 = Gu3,1, σ23 = Gu3,2, (4)

τ13 = −G`
2

2
∆u3,1 +

J

4
ü3,1, τ23 = −G`

2

2
∆u3,2 +

J

4
ü3,2, (5)

µ11 = −µ22 = G`2(1 + η)u3,12, µ21 = G`2(u3,22 − ηu3,11), µ12 = −G`2(u3,11 − ηu3,22). (6)

where ∆ denotes the Laplace operator, J is the rotational inertia, G is the elastic shear modulus,
` and η the couple stress parameters introduced by Koiter [6], with −1 < η < 1. Both
material parameters ` and η depend on the microstructure and can be connected to the material
characteristic lengths in bending and in torsion [12], namely `b = `/

√
2 and `t = `

√
1 + η.

Typical values of `b and `t for some classes of materials with microstructure can be found in
references [7] and [8].
Substituting expressions (4), (5) and (6) in the dynamic equilibrium equation (2)(1), the following
equation of motion is derived [11]:

G∆u3 −
G`2

2
∆∆u3 +

J

4
∆ü3 = ρü3. (7)

We assume that the crack propagates with a constant velocity v straight along the x1-axis
and is subjected to reduced force traction p3 applied on the crack faces, moving with the same
velocity v, whereas reduced couple traction q1 is assumed to be zero,

p3(x1, 0
±, t) = ∓τ(x1 − vt), q1(x1, 0

±, t) = 0, for x1 − vt < 0. (8)

We also assume that the function τ decays at infinity sufficiently fast and it is bounded at the
crack tip. These requirements are the same requirements for tractions as in the classical theory
of elasticity.
It is convenient to introduce a moving framework x = x1 − vt, y = x2, z = x3. By assuming
that the out of plane displacement field has the form u3(x1, x2, t) = w(x, y), then the equation
of motion (7) writes:

∆w − `2

2
∆∆w = m2

(
w,xx − h2

0`
2∆w,xx

)
(9)

where m = v/cs is the crack velocity normalized to the shear waves speed cs, and h0 =
√
J/4ρ/`

is the normalized rotational inertia defined in Mishuris et al., 2012.
According to (1), the non-vanishing components of the reduced force traction and reduced couple
traction vectors along the crack line y = 0, where n = (0,±1, 0), can be written as

p3 = t23 +
1

2
µ22,x, q1 = µ21, (10)

respectively. By using (4)2, (6)1,2, (5)2, and (10), the loading conditions (8) on the upper crack
surface require the following conditions for the function w:

w,y −
`2

2

[
(2 + η − 2m2h2

0)w,xx + w,yy
]
,y

= − 1

G
τ(x), w,yy − ηw,xx = 0, for x < 0, y = 0+.

(11)
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Ahead of the crack tip, the skew-symmetry of the Mode III crack problem requires

w = 0, w,yy − ηw,xx = 0, for x > 0, y = 0+. (12)

Note that the ratio η enters the boundary conditions (11)-(12), but it does not appear into
the governing PDE (9).

3. Dynamic energy release rate
For couple stress elastic materials, the energy flux for a dynamic crack propagating along x1-axis
is given by:

F (Γ) =

∫
Γ

[
(W + T )vn1 + tTn · ∂u

∂t
+ µTn · ∂ϕ

∂t

]
ds, (13)

where n is an outward unit normal on Γ. The strain-energy density W and the kinetic enrgy
density T are given by

W =
1

2

(
σ · ∇u + µT · ∇ϕ

)
, T =

1

2

(
ρ |u̇|2 + J |ϕ̇|2

)
. (14)

Considering a Mode III steady-state crack prapagating at constant velocity v along the x1-
axis, and using the expression for the the out-of-plane defined in Section 2, in the moving
framework (x, y, z) the energy flux (13) assumes the special form

F (Γ) = v

∫
Γ

[
(W + T )nx − tTn · ezw,x − µTn ·ϕ,x

]
ds, (15)

then the generalized J-integral for an antiplane dynamic steady-state crack in couple-stress
elastic materials can be defined:

J =
F (Γ)

v
=

∫
Γ

[
(W + T )nx − tTn · ezw,x − µTn ·ϕ,x

]
ds =

=

∫
Γ

[
(W + T )n− p · ez∇w − (∇ϕ)Tq

]
· exds (16)

The J-integral (16) has been proved to be path independent, the details of the demonstration
are reported in the next Section, and it is the generalization of the static expressions derived by
Freund and Hutchinson [2] and Lubarda and Markenscoff [9] to the antiplane dynamic steady
state case. The dynamic energy release rate is then defined by the limit [1]:

G = lim
Γ→0

∫
Γ

[
(W + T )nx − tTn · ezw,x − µTn ·ϕ,x

]
ds. (17)

4. Conservation of the J-integral
In this Section, we demonstrate that the dynamic J-integral expression (16) is path independent.
Considering a closed oriented path formed by two crack tip contours Γ1 and Γ2 and by the
segments of the crack faces of length d that connect the ends of these contours and using the
notation introduced in Section 2, the energy flux integral corresponding to this entire closed
path Γtot for a Mode III steady state crack in couple-stress materials is given by

F (Γtot) = F (Γ2)− F (Γ1) = v

∮
Γtot

[
(W + T )nx − tTn · ezw,x − µTn ·ϕ,x

]
ds, (18)
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then from the definition (16) we derive

J (Γtot) = J (Γ2)− J (Γ1) =

∮
Γtot

[
(W + T )nx − tTn · ezw,x − µTn ·ϕ,x

]
ds, (19)

where the notation J (Γ1) and J (Γ2) denotes that the dynamic J-integral (16) is evaluated
respect to the crack tip contours Γ1 and Γ2, respectively. Applying the divergence theorem to
the (19) we obtain and remembering that nx = n · ex, we obtain

JΓ2)− J (Γ1) =

∫
Atot

∇ ·
[
(W + T )ex − tTezw,x − µTϕ,x

]
dA, (20)

where Atot is the area within the closed area. For the antiplane steady-state problem the strain
elastic energy density and the kinetic energy density are given by

W =
1

2
(σ13w,x + σ23w,y + µ11ϕ1,x + µ12ϕ2,x + µ21ϕ1,y + µ22ϕ2,y), (21)

T =
v2

2
(ρw2

,x + Jϕ2
1,x + Jϕ2

2,x), (22)

the first term of the integral (20) is the given by

∇ · [(W + T )ex] = (W + T ),x = v2 (ρw,xxw,x + Jϕ1,xxϕ1,x + Jϕ2,xxϕ2,x) +

+
1

2
(σ13,xw,x + σ13w,xx + σ23,xw,y + σ23w3,yx) +

+
1

2
(µ11,xϕ1,x + µ11ϕ1,xx + µ12,xϕ2,x + µ12ϕ2,xx+ (23)

+ µ21,xϕ1,y + µ21ϕ1,yx + µ22,xϕ2,y + µ22ϕ2,yx) .

Taking into account the dynamic equilibrium conditions (2), the second term can be written as
follows

∇ · (tTezw,x) = (∇ · tT ) · ezw,x + tT · ∇w,x =

= ρüw,x + (σ13 + τ13)w,xx + (σ23 + τ23)w,yx = (24)

= ρv2w,xxw,x + (σ13 + τ13)w,xx + (σ23 + τ23)w,yx,

while the third

∇ · (µTϕ,x) = (∇ · µT ) ·ϕ,x + µT · ∇ϕ,x =

= (Jϕ̈1 − 2τ23)ϕ1,x + (Jϕ̈2 + 2τ13)ϕ2,x + µ11ϕ1,x + µ12ϕ2,x + µ21ϕ1,y + µ22ϕ2,y = (25)

=
(
Jv2ϕ1,xx − 2τ23

)
ϕ1,x +

(
Jv2ϕ2,xx + 2τ13

)
ϕ2,x + µ11ϕ1,x + µ12ϕ2,x + µ21ϕ1,y + µ22ϕ2,y.

Substituting (23), (25) and (25) into the integral (20) and expressing ϕ1 and ϕ2 in function of
the displacement by means of relations (3), we obtain

J (Γ2)− J (Γ1) =

∫
Atot

[
1

2

(
σ13,xw,x + σ23,xw,y +

1

2
(µ11,xw,yx − µ12,xw,xx + µ21,xw,yy − µ22,xw,xy)

)
−

− 1

2

(
σ13w,xx + σ23w,yx +

1

2
(µ11w,yxx − µ12w,xxx + µ21w,yyx − µ22w,xyx)

)]
dA, (26)
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finally, introducing into expressions (4) and (6), which define stress and couple-stress tensors in
function of the derivatives of the displacement, we get:

J (Γ2)− J (Γ1) =
G`2

2

∫
Atot

[(w,xxw,xxx + w,yyw,yyx − η (w,yyxw,xx + w,xxxw,yy))−

− (w,xxw,xxx + w,yyw,yyx − η (w,yyxw,xx + w,xxxw,yy))] dA = 0. (27)

We have demonstrated that the J-integral (16) is path independent, as a consequence the
dynamic energy release rate (17) can be evaluated by choosing an arbitrary path Γ surrounding
the crack tip and making the limit Γ→ 0.

Figure 1. Rectangular-shaped contour around the crack-tip

5. Evaluation of the energy release rate
For the evaluation of the energy release rate (17), a rectangular-shaped contour contour Γ with
vanishing height along the y-direction and with ε → +0 reported in Fig.1. Such contour was
first introduced by Freund [1] and recently used by Gourgiotis and Georgiadis [3, 4, 5] and it
permits using solely the asymptotic near-tip stress and displacement fields.

Considering the moving framework in Fig.1 with the origin at the crack tip, the cartesian
components of the outward unit vector normal to Γ are n = (nx, ny, 0), and the generalized
J-integral (16) becomes:

J =

∫
Γ

[(W + T )nx − (t13nx + t23ny)w,x − (µ11nx + µ21ny)ϕ1,x − (µ12nx + µ22ny)ϕ2,x] ds =

=

∫
Γ

[(W + T )− t13w,x − (µ11ϕ1,x + µ12ϕ2,x)] dy −
∫

Γ
[t23w,x + (µ21ϕ1,x + µ22ϕ2,x)] dx, (28)

In order to avaluate the energy release rate, we allow the height of the rectangular path reported
in Fig.1 to vanish. In this limit, the first integral of the (28) is zero. It is also important to
note that anti-symmetry conditions (11) together with boundary conditions (12) provide that
the reduced traction q1 = µ21 is zero along the whole crack line y = 0, where n = (0,±1, 0).
Consequently, the energy release rate (17) becomes:

G = −2 lim
ε→+0

{∫ +ε

−ε

[
t23(x, 0+)w,x(x, 0+) + µ22(x, 0+)ϕ2,x(x, 0+)

]
dx

}
= −2 lim

ε→+0

{∫ +ε

−ε

[
t23(x, 0+)w,x(x, 0+)− 1

2
µ22(x, 0+)w,xx(x, 0+)

]
dx

}
. (29)
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Asymptotic expressions for the total shear stress t23, the couple stress field µ22, and the
out-of-plane diplacement w have been derived by Radi [12] and Piccoloraz et al. [10]. These
fields exhibit the following behavior near to the crack tip:

t23(x, 0+) = Af(h0, η,m)x−3/2, x > 0, (30)

µ22(x, 0+) = Ag(h0, η,m)x−1/2, x > 0, (31)

w(x, 0+) = A(−x)3/2, x < 0. (32)

where A is a constant determined by the boundary conditions (12) and depending by the
characteristic of the loading applied at the faces τ(x), and f(h0, η,m) and g(h0, η,m) are factors
relating the asymptotics leading term of the displacement to the leading terms of t23 and µ22,
respectively. Now, by substituting the (30) and the (32) in the general formula (29), we finally
derive:

G = −2 lim
ε→+0

{
A

[
f(h0, η,m)

∫ +ε

−ε
x

1/2
− x

−3/2
+ dx− g(h0, η,m)

∫ +ε

−ε
x
−1/2
− x

−1/2
+ .dx

]}
(33)

The two products of distributions x
1/2
− , x

−1/2
− and x

−3/2
+ , x

−1/2
+ are obtained through the use of

Fisher’s theorem, that’s leads to the operational relation [3]:

(x−)γ(x+)−1−γ = − πδ(x)

2 sin(πγ)
, with γ 6= −1,−2,−3 . . . , (34)

where δ(x) is the Dirac delta distribution. Then, applying the relation (34) to the (33) and

considering the fundamental property of the Dirac delta distribution
∫ +ε
−ε δ(x)dx = 1, we finally

get:
G = Aπ (f(h0, η,m) + g(h0, η,m)) . (35)

6. Conclusions
A general expression for the dynamic J-integral valid for antiplane crack in a couple stress
elastic material has been derived. A direct procedure for the evaluation of the energy release
rate, based on the assumption of a rectangular-shaped path around the crack tip and requiring
only asymptotics expressions of stresses and displacement, has been illustrated. The proposed
method can be used for evaluating the energy release rate for many dynamic Mode III problems
in couple-stress elastic materials characterized by different loading configurations acting on the
crack faces.
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