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ADAPTIVE REGULARIZATION ALGORITHMS WITH INEXACT
EVALUATIONS FOR NONCONVEX OPTIMIZATION

STEFANIA BELLAVIA∗, GIANMARCO GURIOLI†, BENEDETTA MORINI‡, AND PHILIPPE L. TOINT§

Abstract. A regularization algorithm using inexact function values and inexact derivatives is proposed and
its evaluation complexity analyzed. This algorithm is applicable to unconstrained problems and to problems
with inexpensive constraints (that is constraints whose evaluation and enforcement has negligible cost) under
the assumption that the derivative of highest degree is β-Hölder continuous. It features a very flexible adaptive
mechanism for determining the inexactness which is allowed, at each iteration, when computing objective function
values and derivatives. The complexity analysis covers arbitrary optimality order and arbitrary degree of available
approximate derivatives. It extends results of Cartis, Gould and Toint [Sharp worst-case evaluation complexity

bounds for arbitrary-order nonconvex optimization with inexpensive constraints, arXiv:1811.01220, 2018] on the
evaluation complexity to the inexact case: if a q-th-order minimizer is sought using approximations to the first p

derivatives, it is proved that a suitable approximate minimizer within ǫ is computed by the proposed algorithm in

at most O
(

ǫ
−

p+β
p−q+β

)

iterations and at most O
(

| log(ǫ)|ǫ
−

p+β
p−q+β

)

approximate evaluations. An algorithmic variant,

although more rigid in practice, can be proved to find such an approximate minimizer in O
(

| log(ǫ)| + ǫ
−

p+β
p−q+β

)

evaluations. While the proposed framework remains so far conceptual for high degrees and orders, it is shown
to yield simple and computationally realistic inexact methods when specialized to the unconstrained and bound-
constrained first- and second-order cases. The deterministic complexity results are finally extended to the stochastic
context, yielding adaptive sample-size rules for subsampling methods typical of machine learning.

Key words. Evaluation complexity, regularization methods, inexact functions and derivatives, subsampling
methods.

1. Introduction. Evaluation complexity of algorithms for nonlinear and possibly noncon-
vex optimization problems has been the subject of active research in recent years. This field
is concerned by deriving formal bounds on the number of evaluations of the objective function
(and possibly of its derivatives) necessary to obtain approximate optimal solutions within a user-
specified accuracy. Until recently, the results had focused on methods using first- and second-order
derivatives of the objective function, and on convergence guarantees to first- or second-order sta-
tionary points [28, 22, 23, 18, 10]. Among these contributions, [23, 10] analyzed the “regularization
method”, in which a model of the objective function around a given iterate is constructed by adding
a regularization term to the local Taylor expansion, model which is then approximately minimized
in an attempt to find a new point with a significantly lower objective function value [20]. Such
methods have been shown to possess optimal evaluation complexity [13] for first- and second-
order models and minimizers, and have generated considerable interest in the research commu-
nity. A theoretically significant step was made in [6] for unconstrained problems, where evaluation
complexity bounds were obtained for convergence to first-order stationary points of a simplified
regularization method using models of arbitrary degree. Even more recently, [12] proposed a con-
ceptual unified framework subsuming all known results for regularization methods, establishing
an upper evaluation complexity bound for arbitrary model degree and also, for the first time, for
arbitrary orders of optimality. This paper additionally covers unconstrained problems and prob-
lems involving “inexpensive” constraints, that is constraints whose evaluation/enforcement cost is
negligible compared to that of evaluating the objective function and its derivatives. It also allows
for a full range of smoothness assumptions on the objective function. Finally it proves that the
complexity results obtained are optimal in the sense that upper and lower evaluation complexity
bounds match in order. In [12], all the above mentioned results are established for versions of
the regularization algorithms where it is assumed that objective function values and values of its
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derivatives (when necessary) can be computed exactly.

In practice, it may sometimes be difficult or impossible to obtain accurate values of the
problem’s function and/or derivatives. This difficulty has been known for a long time and has
generated its own stream of results, among which we note the trust-region method using dynamic
accuracy on the objective function and (possibly on) its gradient (see Sections 8.4.1.1 and 10.6 of
[16] and [3]), and the purely probabilistic approaches of [24] and [7].

Since unconstrained cubic regularization methods have become popular in the machine learn-
ing community due to their optimal complexity, several contributions have considered building
those function and derivative’s approximations by “subsampling” the (very many) nonlinear terms
whose sum defines the objective functions typical of machine learning applications (see [1] for
a survey of optimization problems in this area). Inexact Hessian information is considered in
[15, 4, 29, 30], approximate gradient and Hessian evaluations are used in [11, 14, 26, 31], function,
gradient and Hessian values are sampled in [21, 5]. The amount of inexactness allowed is controlled
dynamically in [11, 14, 21, 15, 4].

Contributions. The present paper proposes an extension of the unifying framework of [12]
for unconstrained or inexpensively-constrained problems that allows inexact evaluations of the
objective function and of the required derivatives, in an adaptive way inspired by the trust-region
scheme of [16, Section 10.6]. This extension has the advantage of preserving the optimal complexity
of the standard regularization methods and, as in [12], evaluation complexity results are provided
for arbitrary model degree and arbitrary order of optimality. In particular, the proposed framework
allows all combinations of exact/inexact objective functions and derivatives of any order (including
of course degrees and orders one and two, for which simple specializations are outlined). We also
consider an interesting but practically more restrictive variant of our algorithm for which an
improved complexity can be derived. We finally consider a stochastic version of our framework
and derive rules for sample size in the context of subsampling methods for machine learning.

The paper is organized as follows. Section 2 recalls the notions of high-order optimality pro-
posed in [12] and introduces the general Adaptive Regularization algorithm with model of order p
allowing Dynamic Accuracy (ARpDA). The details of how to obtain the desired relative accuracy
levels from known absolute errors are examined in Section 3. The evaluation complexity of obtain-
ing approximate minimizers using this algorithm is then analyzed in Section 4. The algorithmic
variant of the algorithm is discussed in Section 5. The general framework is specialized to first-
and second-order optimization in Section 6, showing that practical implementation for low order
is simple and computationally realistic. The stochastic evaluation complexity and sampling rules
for machine learning applications are finally derived in Section 7. Conclusions and perspectives
are presented in Section 8.

Notations. Unless otherwise specified, ‖ · ‖ denotes the standard Euclidean norm for vectors
and matrices. For a general symmetric tensor S of order p, we define

‖S‖[p]
def
= max

‖v‖=1
|S[v]p| = max

‖v1‖=···=‖vp‖=1
|S[v1, . . . , vp]| (1.1)

the induced Euclidean norm. We also denote by ∇j
xf(x) the j-th order derivative tensor of f

evaluated at x and note that such a tensor is always symmetric for any j ≥ 2. ∇0
xf(x) is a

synonym for f(x). ⌈α⌉ and ⌊α⌋ denote the smallest integer not smaller than α and the largest
integer not exceeding α, respectively. If i is a non-negative integer and β a real in (0, 1] we define

(i+β)! =
∏i
ℓ=1(ℓ+β). For symmetric matrices, λmin[M ] is the leftmost eigenvalue ofM . Pr[event]

finally denotes the probability of an event. Finally globminx∈S f(x) denotes the smallest value of
f(x) over x ∈ S.

2. High-order necessary conditions and the ARpDA algorithm. Given p ≥ 1, we
consider the set-constrained optimization problem

min
x∈F

f(x), (2.1)
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where F ⊆ IRn is closed and nonempty, and where we assume that the values of the objective

function f and its derivatives must be computed inexactly. We also assume that f ∈ Cp,β(IRn),
meaning that:

• f is p-times continuously differentiable,

• f is bounded below by flow, and

• the p-th derivative tensor of f at x is globally Hölder continuous, that is, there exist
constants L ≥ 0 and β ∈ (0, 1] such that, for all x, y ∈ IRn,

‖∇p
xf(x)−∇p

xf(y)‖[p] ≤ L‖x− y‖β . (2.2)

The more standard case where f is assumed to have Lipschitz-continuous p-th derivative is re-
covered by setting β = 1 in the above assumptions (for example, the choices p = 2 and β = 1
correspond to the assumption that f has a Lipschitz continuous Hessian). In what follows, we
assume that β is known.

If we denote the pth degree Taylor expansion of f around x evaluated at s by

T fp (x, s)
def
= f(x) +

p
∑

ℓ=1

1

ℓ!
∇ℓ
xf(x)[s]

ℓ, (2.3)

we may then define the Taylor increment by

∆T fp (x, s) = T fp (x, 0)− T fp (x, s). (2.4)

Under the above assumptions, we recall the crucial bounds on differences between f and its
derivatives and their Taylor’s expansion.

Lemma 2.1. [12, Lemma 2.1] Let f ∈ Cp,β(IRn), and T fp (x, s) be the Taylor approximation
of f(x+ s) about x given by (2.3). Then for all x, s ∈ IRn,

|f(x+ s)− T fp (x, s)| ≤
L

(p+ β)!
‖s‖p+β , (2.5)

‖∇j
xf(x+ s)−∇j

sT
f
p (x, s)‖[j] ≤

L

(p− j + β)!
‖s‖p+β−j . (j = 1, . . . , p). (2.6)

We also follow [12] and define a q-th-order-necessary minimizer as a point x ∈ IRn such that,
for some δ ∈ (0, 1],

φδf,q(x)
def
= f(x)− globmin

x+d∈F

‖d‖≤δ

T fq (x, d) = 0. (2.7)

Observe that, in the unconstrained case, this definition subsumes the usual optimality criteria for
orders one and two, since, if q = 1, (2.7) gives that, for any δ ∈ (0, 1] (and in particular for δ = 1),

φδf,q(x) = ‖∇1
xf(x)‖δ, (2.8)

and first-order optimality is thus equivalent to

‖∇1
xf(x)‖ = 0.

Similarly, for q = 2, (2.7) is equivalent to

‖∇1
xf(x)‖ = 0 and λmin[∇

2
xf(x)] ≥ 0. (2.9)
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Its properties are further discussed in [12], but we emphasize that, for any q ≥ 1 and in con-
trast with other known measures, it varies continuously when x varies continuously in F . In the
unconstrained case, solving the global optimization problem involved in its definition is easy for
q = 1 as the global minimizer is analytically given by d∗ = −δ∇1

xf(x)/‖∇
1
xf(x)‖, and also for

q = 2 using a trust-region scheme (whose cost is essentially comparable to that of computing the
leftmost eigenvalue in (2.9)). However this task may become NP-hard for larger q. This makes
φδf,q(x) an essentially theoretical tool for these cases. In any case, the computation of φδf,q(x)
does not involve evaluating f or any of its derivatives, and its cost therefore does not affect the
evaluation complexity of interest here.

If we now relax the notion of exact minimizers, we may define an (ǫ, δ)-approximate q-th-
order-necessary minimizer as a point x ∈ IRn

φδf,q(x) ≤ ǫχq(δ), (2.10)

where

χq(δ)
def
=

q
∑

ℓ=1

δℓ

ℓ!
(2.11)

provides a natural scaling. Again this notion reduces to familiar concepts in the low-order uncon-
strained cases. For instance, we verify that for unconstrained problems with q = 2, (2.10) requires
that, if d is the global minimizer in (2.7) (the solution of a trust-region problem),

max
[

0,−
(

∇1
xf(x)

T d+ 1
2d
T∇2

xf(x)d
)]

≤ ǫ(δ + 1
2δ

2),

which automatically holds for any δ ∈ (0, 1] if ‖∇1
xf(x)‖ ≤ ǫ and λmin[∇

2
xf(x)] ≥ −ǫ. We note

that, when assessing whether x is an (ǫ, δ)-approximate q-th-order-necessary minimizer, the global
minimization in (2.7) can be stopped as soon as ∆T fq (x, d) exceeds ǫχq(δ), thereby significantly
reducing the cost of this assessment.

Having defined what we mean by high-order approximate minimizers, we now turn to des-
cribing what we mean by inaccurate objective function and derivatives values. It is important to
observe at this point that, in an optimization problem, the role of the objective function is more
central than that of any of its derivatives, since it is the quantity we ultimately wish to decrease.
For this reason, we will handle the allowed inexactness in f differently from that in ∇j

xf : we will
require an (adaptive) absolute accuracy for the first and a relative accuracy for the second. In
fact, we can, in a first approach, abstract the relative accuracy requirements for the derivatives
∇j
xf(x) into a requirement on the relative accuracy of ∆T fp (x, s). Let ω ∈ [0, 1] represent a

relative accuracy level and denote inexact quantities with an overbar. For what follows, we will
thus require that, if

∆T
f

p(x, s, ω) = T
f

p(xk, 0, ω)− T
f

p(xk, s, ω), (2.12)

then

|∆T
f

p(x, s, ω)−∆T fp (x, s)| ≤ ω∆T
f

p(x, s, ω). (2.13)

It may not be obvious at this point how to enforce this relative error bound: this is the object of
Section 3 below. For now, we simply assume that it can be done in a finite number of evaluations

of {∇j
xf(x)}

p
j=1 which are inexact approximations of {∇j

xf(x)}
p
j=1.

Given an inexactly computed ∆T
f

p(x, s, ω) satisfying (2.13), we then have to consider to
compute our optimality measure inexactly too. Observing that the definition (2.7) is independent
of f(x) because of cancellation, we see that

φ
δ

f,q(x, ω) = max

[

0, globmax
x+d∈F

‖d‖≤δ

∆T
f

q (x, d, ω)

]

. (2.14)
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Under the above assumptions, we now describe an algorithm allowing inexact computation of
both the objective function and its derivatives whose purpose is to find (for given q and a suitable
relative accuracy ω) a point xk satisfying

φ
δ

f,q(x, ω) ≤
ǫ

1 + ω
χq(δ) (2.15)

for some optimality radius δ ∈ (0, 1]. We will show that, at termination, the computed approxi-
mation xǫ is an (ǫ, δ)-approximate q-th-order-necessary minimizer.

This algorithm uses a regularized Taylor’s model defined at iteration k by

mk(s)
def
= T

f

p(xk, s, ωk) +
σk

(p+ β)!
‖s‖p+β . (2.16)

This model is then approximately minimized and the resulting trial point is then accepted or
rejected depending on whether or not it produces a significant decrease. This is detailed in
Algorithm 2.1 on the following page.

Some comments on this algorithm are useful at this stage.

1. That Step 2 may not be able, for q > 2, to compute a nonzero step (and should then
cause termination) can be seen by considering the following one-dimensional example.
Let p = q = 3, F = IR, ωk = 0 and δk−1 = 1 and suppose that T3(xk, s) = s2 − 2s3

and also that σk = 24. This implies that mk(s) = s2 − 2s3 + s4 = s2(1 − s)2 and we
immediately see that the origin is a global minimizer of mk(s). But a simple calculation

shows that φ
δk−1

f,q = T3(xk, 0) − T3(xk, 1) = 1 and hence termination will not occur in
Step 1 if ǫ < 1/χ3(1) = 4/7. As a consequence, as was pointed out in [12], the possibility
of a zero sk cannot be ignored in Step 2. In this case, it is not possible to satisfy (2.19)
and the algorithm terminates with xε = xk. It has been proved in [12, Lemma 2.6] that
this is acceptable (see also Lemma 2.4 below).

2. Our assumption (2.13) is used three times in the algorithm: in Step 1 for computing

φ
δk−1

f,q (xk, ωk) and in Step 2 when computing sk and φ
δk
mk,q

(sk, ωk).

3. As indicated above, we require a bound on the absolute error in the objective function
value: this is the object of (2.21) and (2.22), where we introduced the notation fk(xk, ωk)
to denote an inexact approximation of f(xk). Note that a new value of fk(xk, ωk) should

be computed to ensure (2.22) in Step 3 only if k > 0 and ωk−1∆T
f

p(xk−1, sk−1, ωk−1) >

ωk∆T
f

p(xk, sk, ωk). If this is the case the (inexact) function value is computed twice per
iteration instead of just once.

4. At variance with the trust-region method with dynamic accuracy of [16, Section 10.6]
and [3], we do not recompute approximate values of the objective function at xk once the
computation of sk is complete (provided we can ensure (2.13), as discussed in Section 3).

5. If ‖sk‖ ≥ µǫ
1

p−q+β in Step 2, then the (potentially costly) calculation of φ
δk
mk,q

(sk, ωk) is
unecessary and δk may be chosen arbitrarily in (0, 1].

6. We call iteration k successful when ρk ≥ η1 and xk+1 = xk + sk. The iteration is called
unsuccessful otherwise, and xk+1 = xk in this case. We use the notation

Sk = {j ∈ {0, . . . , k} | ρj ≥ η1} (2.26)

to denote the set of successful iterations of index at most k.

7. As indicated above, ensuring (2.13) may require a certain number of (approximate) eval-
uations of the derivatives of f . For a single iteration of the algorithm, these evaluations
are always at the current iterate xk.

8. It is worth noting that from (2.17), (2.18), (2.24) and (2.25), together with the positivity
of σ0 and σmin,

0 < ωk ≤ κω < 1. (2.27)
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Algorithm 2.1: Adaptive Regularization of order p with Dynamic Accuracy
(ARpDA)

Step 0: Initialization. An initial point x0 ∈ F and an initial regularization parameter
σ0 > 0 are given, as well as an accuracy level ǫ ∈ (0, 1) and an initial relative
accuracy ω0 ≥ 0. The constants κω, δ−1, θ, µ, η1, η2, γ1, γ2, γ3 and σmin are also
given and satisfy θ > 0, µ ∈ (0, 1], δ−1 ∈ (0, 1], σmin ∈ (0, σ0],

0 < η1 ≤ η2 < 1, 0 < γ1 < 1 < γ2 < γ3, (2.17)

α ∈ (0, 1), κω ∈ (0, 1
2αη1] and ω0 = min

[

κω,
1

σ0

]

. (2.18)

Set k = 0.
Step 1: Compute the optimality measure and check for termination. Compute

φ
δk−1

f,q (xk, ωk). If (2.15) holds with δ = δk−1, terminate with the approximate
solution xǫ = xk.

Step 2: Step calculation. Attempt to compute a step sk 6= 0 such that xk + sk ∈ F and
an optimality radius δk ∈ (0, 1] by approximately minimizing the model mk(s) in the
sense that

mk(sk) < mk(0) (2.19)

and

‖sk‖ ≥ µǫ
1

p−q+β or φ
δk
mk,q

(sk, ωk) ≤
θ‖sk‖

p−q+β

(p− q + β)!
χq(δk). (2.20)

If no such step exists, terminate with the approximate solution xǫ = xk.
Step 3: Acceptance of the trial point. Compute fk(xk + sk, ωk) ensuring that

|fk(xk + sk, ωk)− f(xk + sk)| ≤ ωk|∆T
f

p(xk, sk, ωk)|. (2.21)

Also ensure (by setting fk(xk, ωk) = fk−1(xk, ωk−1) or by (re)computing fk(xk, ωk))
that

|fk(xk, ωk)− f(xk)| ≤ ωk|∆T
f

p(xk, sk, ωk)|. (2.22)

Then define

ρk =
fk(xk, ωk)− fk(xk + sk, ωk)

∆T
f

p(xk, sk, ωk)
. (2.23)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.
Step 4: Regularization parameter update. Set

σk+1 ∈







[max(σmin, γ1σk), σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(2.24)

Step 5: Relative accuracy update. Set

ωk+1 = min

[

κω,
1

σk+1

]

. (2.25)

Increment k by one and go to Step 1.
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We now state some properties of the algorithm that are derived without modification from
the case where the computation of f and its derivatives are exact.

Lemma 2.2. [10, Theorem 2.1] The mechanism of the ARpDA algorithm ensures that, if

σk ≤ σmax, (2.28)

for some σmax > 0, then

k + 1 ≤ |Sk|

(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(

σmax

σ0

)

. (2.29)

This shows that the number of unsuccessful iterations must remain a fixed proportion of that of
the successful ones.

Lemma 2.3. [12, Lemma 2.5] Suppose that s∗k 6= 0 is a global minimizer of mk(s) under the
constraint that xk + s ∈ F , such mk(s

∗
k) < mk(0). Then there exist a neighbourhood of s∗k

and a range of sufficiently small δ such that (2.19) and the second part of (2.20) hold for any
sk in the intersection of this neighbourhood with F and any δk in this range.

The above lemma thus ensures that the algorithm is well-defined when sk 6= 0. The lemma below
shows that it is reasonable to terminate the algorithm whenever a nonzero descent step cannot be
computed.

Lemma 2.4. [12, Lemma 2.6] Suppose that the algorithm terminates in Step 2 of iteration k
with xε = xk. Then there exists a δ ∈ (0, 1] such that (2.15) holds for x = xε and ω = ωk.

3. Enforcing the relative error on Taylor increments. We now return to the question
of enforcing (2.13). For improved readability, we temporarily ignore the iteration index k.

3.1. The accuracy checks. While there may be circumstances where (2.13) can be enforced

directly, we consider here that the only control the user has on the accuracy of ∆T
f

p(x, s, ω) is by

enforcing bounds {εj}
p
j=1 on the absolute errors on the derivative tensors {∇j

xf(x)}
p
j=1. In other

words, we seek to ensure (2.13) by selecting absolute accuracies {εj}
p
j=1 such that, when

‖∇j
xf(x)−∇j

xf(x)‖[j] ≤ εj for j ∈ {1, . . . , p}, (3.1)

the desired accuracy requirement follows.
In all cases described below, the process can be viewed as an iteration with four main steps.

The first is to compute the relevant approximate derivative satisfying (3.1) for given values of
{εj}

p
j=1. The second is to use these approximate derivatives to compute the desired Taylor incre-

ment and associated quantities. Tests are then performed in the third step to verify the desired
accuracy requirements and terminate if they are met. If not the case, the absolute accuracies
{εj}

p
j=1 are then decreased before a new iteration is started.
As can be expected, a suitable relative accuracy requirement will be achievable as long as

∆T
f

p(x, s, ω) remains safely away from zero, but, if exact computations are to be avoided, we may

have to accept a simpler absolute accuracy guarantee when ∆T
f

p(x, s, ω) vanishes.
We then formalize the resulting accuracy tests in the VERIFY algorithm, stated as Algo-

rithm 3.1 on the next page.
Assume that for a vector vω, a bound δ ≥ ‖vω‖, a degree r, the requested relative and absolute

accuracies ω and ξ > 0, the increment ∆T r(x, vω, ω) are given. We intend to use the algorithm for

∆T
f

q (x, vω, ω), ∆T
f

p(x, vω, ω) and ∆T
mk
q (x, vω, ω). For keeping our development general, we use
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the notations ∆T r(x, vω, ω) and ∆Tr(x, vω) without superscript. Moreover, we assume that the
current absolute accuracies {ζj}

r
j=1 of the derivatives of T r(x, vω, ω) with respect to vω at vω = 0

are given. Because it will be the case below, we assume for simplicity that ∆T r(x, vω, ω) ≥ 0.

Algorithm 3.1: Verify the accuracy of ∆T r(x, vω, ω)

flag = VERIFY
(

δ,∆T r(x, vω, ω), {ζj}
r
j=1, ω, ξ

)

Set flag = 0.
• If

∆T r(x, vω, ω) = 0 and max
j∈{1,...,r}

ζj ≤ ξ, (3.2)

set flag = 1.
• Else, if

∆T r(x, vω, ω) > 0 and

r
∑

j=1

ζj
j!
δj ≤ ω∆T r(x, vω, ω), (3.3)

set flag = 2.
• Else, if

∆T r(x, vω, ω) > 0 and

r
∑

j=1

ζj
j!
δj ≤ ξχr(δ), (3.4)

set flag = 3.

Let us now consider what properties are ensured for the various possible values of flag.

Lemma 3.1. Suppose that

∥

∥

∥

[

∇j
vωTr(x, vω)

]

vω=0
−
[

∇j
vωTr(x, vω)

]

vω=0

∥

∥

∥

[j]
≤ ζj for j ∈ {1, . . . , r} (3.5)

and ω ∈ (0, 1). Then we have that
• if

max
j∈{1,...,r}

ζj ≤ ξ, (3.6)

then the VERIFY algorithm returns a nonzero flag,
• if the VERIFY algorithm terminates with flag = 1, then ∆T r(x, vω, ω) = 0 and

∣

∣∆T r(x, v, ω)−∆Tr(x, v)
∣

∣ ≤ ξχr(‖v‖) for all v, (3.7)

• if the VERIFY algorithm terminates with flag = 2, then ∆T r(x, vω, ω) > 0 and

∣

∣∆T r(x, v, ω)−∆Tr(x, v)
∣

∣ ≤ ω∆T r(x, vω, ω), for all v with ‖v‖ ≤ δ, (3.8)

• if the VERIFY algorithm terminates with flag = 3, then ∆T r(x, vω, ω) > 0 and

max
[

∆T r(x, vω, ω),
∣

∣∆T r(x, v, ω)−∆Tr(x, v)
∣

∣

]

≤
ξ

ω
χr(δ) for all v with ‖v‖ ≤ δ.

(3.9)

Proof. We first prove the first proposition. If ∆T r(x, vω, ω) = 0 and (3.6), then (3.2) ensures
that flag = 1 is returned. If ∆T r(x, vω, ω) > 0, from (2.11) and (3.6), we deduce that

r
∑

j=1

ζj
j!
δj ≤

[

max
j∈{1,...,r}

ζj

]

χr(δ) ≤ ξχr(δ)
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also causing termination with flag = 3 because of (3.4) if it has not occurred with flag = 2
because of (3.3), hence proving the first proposition.

Consider now the three possible termination cases and suppose first that termination occurs
with flag = 1. Then, using the triangle inequality, (3.5), (3.2) and (2.11), we have that, for any
v,

∣

∣∆T r(x, v, ω)−∆Tr(x, v)
∣

∣ ≤

r
∑

j=1

ζj
j!
‖v‖j ≤ ξχr(‖v‖)

yielding (3.7). Suppose now that flag = 2. Then (3.3) holds and for any v with ‖v‖ ≤ δ,

∣

∣∆T r(x, v, ω)−∆Tr(x, v)
∣

∣ ≤
r
∑

j=1

ζj
j!
‖v‖j ≤

r
∑

j=1

ζj
j!
δj ≤ ω∆T r(x, vω, ω),

which is (3.8). Suppose finally that flag = 3. Since termination did not occur in (3.3), we have
that

0 < ω∆T r(x, vω, ω) ≤ ξχr(δ). (3.10)

Furthermore, (3.4) implies that, for any v with ‖v‖ ≤ δ,

∣

∣∆T r(x, v, ω)−∆Tr(x, v)
∣

∣ ≤

r
∑

j=1

ζj
j!
‖v‖j ≤

r
∑

j=1

ζj
j!
δj ≤

ξ

ω
χr(δ).

This inequality and (3.10) together imply (3.9).
Clearly, the outcome corresponding to our initial aim to obtain a relative error at most ω corre-
sponds to the case where flag = 2. As we will see below, the two other cases are also useful.

3.2. Computing φ
δk−1

f,q (xk, ωk). We now consider, in Algorithm 3.2, how to compute the

optimality measure φ
δk−1

f,q (xk, ωk) in Step 1 of the ARpDA algorithm.
We immediately observe that Algorithm 3.2 terminates in a finite number of iterations, since it
does so as soon as flag > 0, which, because of the first proposition of Lemma 3.1, must happen
after a finite number of passes in iterations using (3.12). We discuss in Section 3.4 exactly how
many such decreases might be needed.

We now verify that terminating the ARpDA algorithm as indicated in this modified version
of Step 1 provides the required result. We start noting that, if xk is an isolated feasible point (i.e.
such that the intersection of any ball of radius δk−1 > 0 centered at xk with F is reduced to xk),
then clearly dk = 0 and thus, irrespective of ωk and δk−1 > 0,

φ
δk−1

f,q (xk) = 0 = ∆T
f

q (xk, dk, ωk) = φ
δk−1

f,q (xk, ωk), (3.13)

which means that φ
δk−1

f,q (xk, ωk) is a faithful indicator of optimality at xk.

Lemma 3.2. If the ARpDA algorithm terminates within Step 1.4, then

φ
δk−1

f,q (xk) ≤ ǫχq(δk−1) (3.14)

and xk is a (ǫ, δk−1)-approximate q-th-order-necessary minimizer. Otherwise Algorithm 3.2
terminates with

(1− ωk)φ
δk−1

f,q (xk, ωk) ≤ φ
δk−1

f,q (xk) ≤ (1 + ωk)φ
δk−1

f,q (xk, ωk). (3.15)

Proof. We first notice that Step 1.2 of Algorithm 3.2 yields (3.5) with Tr = T fr , r = q and
{ζj}

r
j=1 = {εj,iε}

q
j=1. Furthermore, ω = ωk ∈ (0, 1), so that the assumptions of Lemma 3.1 are
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Algorithm 3.2: Modified Step 1 of the ARpDA algorithm

Step 1: Compute the optimality measure and check for termination.

Step 1.0: The iterate xk and the radius δk−1 ∈ (0, 1] are given, as well as constants
γε ∈ (0, 1) and κε > 0. Set iε = 0.

Step 1.1: Choose an initial set of derivative absolute accuracies {εj,0}
p
j=1 such that

εj,0 ≤ κε for j ∈ {1, . . . , p}. (3.11)

Step 1.2: If unavailable, compute {∇j
xf(xk)}

q
j=1 satisfying

‖∇j
xf(x)−∇j

xf(x)‖[j] ≤ εj,iε for j ∈ {1, . . . , q}.

Step 1.3: Solve

globmax
xk+d∈F

‖d‖≤δk−1

∆T
f

q (xk, d, ωk),

to obtain the maximizer dk and the corresponding Taylor increment

∆T
f

q (xk, dk, ωk). Compute

flag = VERIFY
(

δk−1,∆T
f

q (xk, dk, ωk), {ǫj}
q
j=1, ωk,

1
2ωkǫ

)

.

Step 1.4: Terminate the ARpDA algorithm with the approximate solution xǫ = xk
if flag = 1, or if flag = 3, or if flag = 2 and (2.15) holds with δ = δk−1. Also
go to Step 2 of the ARpDA algorithm if flag = 2 but (2.15) fails.

Step 1.5: Otherwise (i.e. if flag = 0), set

εj,iε+1 = γεεj,iε for j ∈ {1, . . . , p}, (3.12)

increment iε by one and return to Step 1.1.

satisfied. If xk is an isolated feasible point, the lemma’s conclusions directly follow from (3.13).
Assume therefore that xk is not an isolated feasible point and note first that, because Step 1.3

finds the global maximum of ∆T
f

q (xk, d, ωk), we have that ∆T
f

q (xk, dk, ωk) ≥ 0. Suppose now

that, in Step 1.3, the VERIFY algorithm returns flag = 1 and thus that ∆T
f

q (xk, dk, ωk) = 0.

This means that xk is a global minimizer of T
f

q (xk, d, ωk) in the intersection of a ball of radius

δk−1 and F and ∆T
f

q (xk, d, ωk) ≤ 0 for any d in this intersection. Thus, for any such d, we obtain
from (3.7) with ξ = 1

2ωkǫ that

∆T fq (xk, d) ≤ ∆T
f

q (xk, d, ωk) +
∣

∣

∣
∆T

f

q (xk, d, ωk)−∆T fq (xk, d)
∣

∣

∣
≤ 1

2ωkǫχq(δk−1),

which, since ωk ≤ 1, implies (3.14). Suppose next that the VERIFY algorithm returns flag = 3.

Then ∆T
f

q (xk, dk, ωk) > 0 and thus dk 6= 0. Using the fact that the nature of Step 1.3 ensures

that ∆T
f

q (xk, d, ωk) ≤ ∆T
f

q (xk, dk, ωk) for d with ‖d‖ ≤ δk−1 we have, using (3.9) with ξ = 1
2ωkǫ,

that, for all such d,

∆T fq (xk, d) ≤ ∆T
f

q (xk, d, ωk) +
∣

∣

∣
∆T

f

q (xk, d, ωk)−∆T fq (xk, d)
∣

∣

∣

≤ ∆T
f

q (xk, dk, ωk) +
∣

∣

∣
∆T

f

q (xk, d, ωk)−∆T fq (xk, d)
∣

∣

∣

≤ ǫχq(δk−1)
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yielding (3.14). If the VERIFY algorithm returns flag = 2, then, for any d with ‖d‖ ≤ δk−1,

∆T fq (xk, d) ≤ ∆T
f

q (xk, d, ωk) +
∣

∣

∣
∆T

f

q (xk, d, ωk)−∆T fq (xk, d)
∣

∣

∣
≤ (1 + ωk)∆T

f

q (xk, dk, ωk).

Thus, for all d with ‖d‖ ≤ δk−1,

max
[

0,∆T fq (xk, d)
]

≤ (1 + ωk)max
[

0,∆T
f

q (xk, dk, ωk)
]

= (1 + ωk)φ
δk−1

f,q (xk, ωk). (3.16)

But termination implies that (2.15) holds for δ = δk−1, and (3.14) follows with this value of δ.
Finally, if the ARpDA algorithm does not terminates within Step 1.4 but Algorithm 3.2 terminates,
it must be because the VERIFY algorithm returns flag = 2. This implies, as above, that (3.16)
holds, which is the rightmost part of (3.15). Similarly, for any d with ‖d‖ ≤ δk−1,

∆T fq (xk, d) ≥ ∆T
f

q (xk, d, ωk)−
∣

∣

∣
∆T

f

q (xk, d, ωk)−∆T fq (xk, d)
∣

∣

∣

≥ ∆T
f

q (xk, d, ωk)− ωk∆T
f

q (xk, dk, ωk).

Hence

globmax
xk+d∈F
‖d‖≤δk−1

∆T fq (xk, d) ≥ globmax
xk+d∈F
‖d‖≤δk−1

[

∆T
f

q (xk, d, ωk)− ωk∆T
f

q (xk, dk, ωk)
]

= (1− ωk)∆T
f

q (xk, dk, ωk).

Since ∆T
f

q (xk, dk, ωk) > 0 when the VERIFY algorithm returns flag = 2, we then obtain that,
for all ‖d‖ ≤ δk−1,

max
[

0, globmax
xk+d∈F
‖d‖≤δk−1

∆T fq (xk, d)
]

≥ max
[

0, (1− ωk)∆T
f

q (xk, dk, ωk)
]

= (1− ωk)φ
δk−1

f,q (xk, ωk),

which is the leftmost part of (3.15).

3.3. Computing sk. We now consider computing sk at Step 2 of the ARpDA algorithm.
The process is more complicated than for Step 1, as it potentially involves two situations in which
one wishes to guarantee a suitable relative error. The first is when minimizing the model

mk(s) = f(xk, ωk)−∆T
f

p(xk, s, ωk) +
σk

(p+ β)!
‖s‖p+β

or, equivalently, maximizing

−mk(s) = −f(xk, ωk) + ∆T
f

p(xk, s, ωk)−
σk

(p+ β)!
‖s‖p+β , (3.17)

and the second is when globally minimizing the model’s Taylor expansion taken at xk + sk in a
neighbourhood of diameter δk. The first of these situations can be handled in a way very similar

to that used above for computing φ
δk−1

f,q (xk) in Step 1: given a set of approximate derivatives, a
step sk is computed such that it satisfies (2.19) and (2.20), the relative error of the associated

∆T
f

p(xk, sk, ωk) is then evaluated and, if it is insufficient, the accuracy on the derivative approxi-

mations improved and the process restarted. If the relative error on ∆T
f

p(xk, sk, ωk) is satisfactory

and the first test of (2.20) fails, it remains to check that the relative error on φ
δk
mk,q

(sk, ωk) is also
satisfactory. Moreover, as in the original ARpDA algorithm, we have to take into account the pos-
sibility that minimizing the model might result in a vanishing decrease. The resulting somewhat
involved process is formalized in Algorithm 3.3 on the following page.
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Algorithm 3.3: Modified Step 2 of the ARpDA algorithm

Step 2: Step calculation.

Step 2.0: The iterate xk, the radius δk−1 ∈ (0, 1], the constants γε ∈ (0, 1), ϑ ∈
(0, 1), the counter iε and the absolute accuracies {εj,iε}

p
j=1 are given.

Step 2.1: If unavailable, compute {∇j
xf(xk)}

p
j=1 satisfying (3.1) with εj = εj,iε for

j ∈ {1, . . . , p}.
Step 2.2: • Attempt to compute a step sk 6= 0 with xk+sk ∈ F such that (2.19)

holds.
• If this not possible, set flags = 1 and go to Step 2.3.
• Otherwise, pursue the approximate minimization of the model mk(s) for
xk + sk ∈ F in order to satisfy (2.20), yielding a step sk, a decrease

∆T
f

p(xk, sk, ωk) and, if the first part of (2.20) fails, the global maximizer

dmkk of ∆T
mk
q (sk, d, ωk) subject to ‖d‖ ≤ δk and xk + sk + d ∈ F , together

with the corresponding Taylor increment ∆T
mk
q (sk, d

mk
k , ωk).

• Compute

flags = VERIFY
(

‖sk‖,∆T
f

p(xk, sk, ωk), {ǫj}
p
j=1, ωk,

1
2ωkǫ

)

.

If flags = 0 go to Step 2.5.
Step 2.3: If flags = 1 or flags = 3, compute

globmin
xk+s∈F

mk(s),

to obtain the minimizer sk, ∆T
f

p(xk, sk, ωk).

Set dmkk = 0 = ∆T
mk
q (sk, d

mk
k , ωk) and compute

flags = VERIFY
(

‖sk‖,∆T
f

p(xk, sk, ωk), {ǫj}
p
j=1, ωk,

1
2ωkǫ

)

.

If flags = 0 go to Step 2.5.
Step 2.4: If flags = 1 or flags = 3, terminate the ARpDA algorithm with xǫ =

xk. Otherwise, if ‖sk‖ ≥ µǫ
1

p−q+β or if ‖sk‖ < µǫ
1

p−q+β and

flagd=VERIFY
(

δk,∆T
mk
q (sk, d

mk
k , ωk), {3ǫj}

q
j=1, ωk,

ϑ(1− κω)

(1 + κω)2
ωkǫ

2

)

> 0,

go to Step 3 of the ARpDA algorithm with the step sk, the associated

∆T
f

p(xk, sk, ωk) and δk.
Step 2.5: Set (if flags = 0 or flagd = 0),

εj,iǫ+1 = γεεj,iǫ for j ∈ {1, . . . , p}, (3.18)

increment iε by one and go to Step 2.1.

Observe that, in Step 2.2, dmkk and ∆T
mk
q (sk, d

mk
k , ωk) result from the computation of φ

δk
mk,q

(sk, ωk)
which is necessary to verify the second part of (2.20). Note also that we have specified, in the
call to VERIFY in Step 2.4 of Algorithm 3.3, absolute accuracy values equal to {3ǫj}

q
j=1. This

is because this call aims at checking the accuracy of the Taylor expansion of the model and the
derivatives which are then approximated are not {∇j

xf(xk)}
q
j=1, but {∇j

dT
mk
q (sk, 0)}

q
j=1. It is

easy to verify that these (approximate) derivatives are given by

∇j
dT

mk
q (sk, 0) =

p
∑

ℓ=j

∇ℓ
xf(xk)‖sk‖

ℓ−j

(ℓ− j)!
+
[

∇j
s‖s‖

p+β
]

s=sk
, (3.19)

where the last term of the right-hand side is exact. This yields the following error bound.
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Lemma 3.3. Suppose that ‖sk‖ ≤ µǫ
1

p−q+β . Then, for all j ∈ {1, . . . , p},

∣

∣

∣
∇j
dT

mk
q (sk, 0)−∇j

dT
mk
q (sk, 0)

∣

∣

∣
≤ 3 εj . (3.20)

Proof. Using the triangle inequality, (3.19), the inequality ‖sk‖ ≤ µǫ
1

p−q+β ≤ µ and (2.11), we
have that, for all j ∈ {1, . . . , p},

∣

∣

∣
∇j
dT

mk
q (sk, 0)−∇j

dT
mk
q (sk, 0)

∣

∣

∣
≤

p
∑

ℓ=j

εj‖sk‖
ℓ−j

(ℓ− j)!
≤ εj

p
∑

ℓ=j

µℓ−j

(ℓ− j)!
≤ εj(1 + χp(µ))

and (3.20) follows since χp(µ) ≤ 2µ.

Again, Algorithm 3.3 must terminate in a finite number of iterations. Indeed, if after finitely
many iterations flags = 1 or flags = 3 at the start of Step 2.4, the conclusion is obvious. Suppose

now that flags = 2 at all iterations. If ‖sk‖ < µǫ
1

p−q+β always hold, the first proposition of
Lemma 3.1 ensures that flagd > 0 after finitely many decreases in (3.18), also causing termination.

Termination might of course occur if ‖sk‖ ≥ µǫ
1

p−q+β before this limit.

The next lemma characterizes the outcomes of Algorithm 3.3.

Lemma 3.4. Suppose that the modified Step 2 is used in the ARpDA algorithm. If this
algorithm terminates within that step, then either xk is an (ǫ, δ)-approximate q-th-order-
necessary minimizer for some δ > 0, or

φ
‖sk‖
f,p (xk) ≤ ǫχp(‖sk‖). (3.21)

Otherwise we have that (2.19) and

∣

∣

∣
∆T

f

p(xk, sk, ωk)−∆T fp (xk, sk)
∣

∣

∣
≤ ωk∆T

f

p(xk, sk, ωk) (3.22)

are satisfied. Moreover, either ‖sk‖ ≥ µǫ
1

p−q+β , or

φδkmk,q(sk) ≤ (1 + κω) max

[

ϑ(1− κω)

(1 + κω)2
ǫ,
θ‖sk‖

p−q+β

(p− q + β)!

]

χq(δk). (3.23)

hold.

Proof. We first note that, because of (3.17) and because Step 2.2 imposes (2.19), we have that

∆T
f

p(xk, sk, ωk) ≥ 0 at the end of this step. Let us first consider the case where the calls to the
VERIFY algorithm in Step 2.2 and in Step 2.3 both return flags = 1 or flags = 3 and note that
Step 2.1 yields (3.5) with Tr = T fr , r = p and {ζj}

r
j=1 = {εj,iε}

p
j=1. Moreover, ω = ωk ∈ (0, 1) so

that we can use Lemma 3.1 to analyse the outcome of the above calls to the VERIFY Algorithm.
If Step 2.3 returns ‖sk‖ = 0 and flags = 1, the ARpDA algorithm stops and Lemma 2.4 ensures
that (2.15) holds for x = xε for a radius δ ∈ (0, 1). Note that VERIFY cannot return flags = 3

since ∆T
f

p(xk, sk, ωk) = 0. Moreover, since flags = 1 Algorithm 3.1 returns εj ≤ 1
2ωkǫ, for

j = 1, . . . , p. Then, by (3.1), (2.3) it follows that

∣

∣

∣
∆T

f

q (xk, s, ωk)−∆T fq (xk, s)
∣

∣

∣
≤

1

2
ωkǫχq(‖s‖) for all s.
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Consequently, (2.14) and (2.15) yield that

∆T fq (xk, s) ≤ ∆T
f

q (xk, s, ωk) +
∣

∣

∣
∆T

f

q (xk, s, ωk)−∆T fq (xk, s)
∣

∣

∣

≤ φ
δ

f,q(xk, ωk) +
1

2
ωkǫχq(δ)

≤

(

1

1 + ωk
+

1

2
ωk

)

ǫχq(δ)

for all ‖s‖ ≤ δ. Noting that
(

1
1+ωk

+ 1
2ωk

)

< 1 for ωk ∈ (0, 1), it follows from (2.7) that xk is an

(ǫ, δ)-approximate q-th-order-necessary minimizer. Otherwise (i.e. if Step 2.3 returns ‖sk‖ > 0),

we have that ∆T
f

p(xk, sk, ωk) > 0 because of (2.19). Moreover, using the fact that sk computed
in Step 2.3 is a global minimizer of mk, we obtain that

∆T
f

p(xk, s, ωk)−
σk

(p+ β)!
‖s‖p+β ≤ ∆T

f

p(xk, sk, ωk)−
σk

(p+ β)!
‖sk‖

p+β (3.24)

for all s. Thus, if ‖s‖ ≤ ‖sk‖, then ∆T
f

p(xk, s, ωk) ≤ ∆T
f

p(xk, sk, ωk). This implies that

globmax
xk+s∈F
‖s‖≤‖sk‖

∆T
f

p(xk, s, ωk) = ∆T
f

p(xk, sk, ωk).

We may now repeat the proof of Lemma 3.2 for the cases flags ∈ {1, 3}, with q replaced by p and
δk−1 replaced by ‖sk‖, and deduce that (3.21) holds.

Assume now that Algorithm 3.3 terminates in Step 2.4. This means that the VERIFY algo-
rithm invoked in either Step 2.2 or Step 2.3 terminates with flags = 2, and we deduce from (3.8)
that(3.22) holds.

Let us now consider the case ‖sk‖ < µǫ
1

p−q+β and note that Lemma 3.3 ensures that (3.5) is
satisfied with Tr = Tmkr , r = q and {ζj}

r
j=1 = {3εj,iε}

q
j=1. Moreover, the triangle inequality gives

∆Tmkq (sk, d) ≤ ∆T
mk
q (sk, d, ωk) +

∣

∣

∣
∆T

mk
q (sk, d, ωk)−∆Tmkq (sk, d)

∣

∣

∣
. (3.25)

First, assume that, in Step 2.4, Algorithm 3.3 terminates because flagd = 1 is returned by

VERIFY. Then, ∆T
mk
q (sk, d

mk
k , ωk) = 0. Moreover, using (3.25), the definition of dmkk given at

Step 2.2 of Algorithm 3.3, (3.7) and recalling that ωk ≤ 1, we obtain that, for all d with ‖d‖ ≤ δk,

∆Tmkq (sk, d) ≤ ∆T
mk
q (sk, d, ωk) +

∣

∣

∣
∆T

mk
q (sk, d, ωk)−∆Tmkq (sk, d)

∣

∣

∣

≤ ∆T
mk
q (sk, d

mk
k , ωk) +

∣

∣

∣
∆T

mk
q (sk, d, ωk)−∆Tmkq (sk, d)

∣

∣

∣

=
∣

∣

∣
∆T

mk
q (sk, d, ωk)−∆Tmkq (sk, d)

∣

∣

∣

≤
ϑ(1− κω)

2(1 + κω)2
ωk ǫ χq(‖d‖)

≤
ϑ(1− κω)

(1 + κω)2
ǫ χq(δk). (3.26)

If, instead, termination occurs with VERIFY returning flagd = 2, then we will show that for all
d with ‖d‖ ≤ δk,

∆Tmkq (sk, d) ≤ (1 + ωk)∆T
mk
q (sk, d

mk
k , ωk) ≤ (1 + ωk)

θ‖sk‖
p−q+β

(p− q + β)!
χq(δk). (3.27)
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Indeed, from (3.25), (3.8), (2.27) and the definition of dmkk at Step 2.2 of Algorithm 3.3, we obtain
for all d with ‖d‖ ≤ δk

∆Tmkq (sk, d) ≤ (1 + ωk)∆T
mk
q (sk, d

mk
k , ωk),

≤ (1 + ωk)max

[

0, globmax
xk+sk+d∈F

‖d‖≤δk

∆T
mk
q (sk, d, ωk)

]

= (1 + ωk)φ
δk
mk,q

(sk, ωk),

in which the equality follows from the definition (2.14). We can then conclude, using (2.20), that
(3.27) holds for all d with ‖d‖ ≤ δk.

Finally, if termination occurs instead because VERIFY returns flagd = 3, we deduce from the
(3.25) and (3.9) that, for all d with ‖d‖ ≤ δk,

∆Tmkq (sk, d) ≤
ϑ(1− κω)

(1 + κω)2
ǫ χq(δk) (3.28)

Observe now that (2.27), (2.7) (for mk at sk) and each of (3.26), (3.27) or (3.28) ensures (3.23).
Note that (3.21) may be viewed as a stronger optimality condition than (2.10) since it implies

that the p-th (rather than q-th with q ≤ p) order Taylor expansion of f around xk is bounded below
by a correctly scaled multiple of ǫ, and in a possibly larger neighbourhood. It is thus acceptable
to terminate the ARpDA algorithm with xǫ = xk as stated in Step 2.4 of Algorithm 3.3.

3.4. The complexity of a single ARpDA iteration. The last part of this section is
devoted to bounding the evaluation complexity of a single iteration of the ARpDA algorithm. The
count in (approximate) objective function evaluations is the simplest: these only occur in Step 3
which requires at most two such evaluations.

Now observe that evaluations of {∇j
xf}

p
j=1 possibly occur in Steps 1.2 and 2.1. However it is

important to note that, within these steps, the derivatives are evaluated only if the current values

of the absolute errors are smaller than that used for the previous evalutions of the same derivative
at the same point (xk). Moreover, these absolute errors are, by construction, linearly decreasing
with rate γε within the same iteration of the ARpDA algorithm (they are initialized in Step 1.1,
decreased each time by a factor γε in (3.12) invoked in Step 1.5, down to values {εj,iε}

p
j=1 which

are then passed to the modified Step 2, and decreased there further in (3.18) in Step 2.5, again by
successive multiplication with γε). Furthermore, we have argued already, both for the modified
Step 1 and the modified Step 2, that any of these algorithms terminates as soon as (3.6) holds
for the relevant value of ξ, which we therefore need to determine. For Step 1, this value is 1

2ωkǫ,
while, for Step 2, it is given by

min

[

1
2ωkǫ,

ϑ(1− κω)

(1 + κω)2
ωkǫ

2

]

=
ϑ(1− κω)

2(1 + κω)2
ωkǫ (3.29)

when ‖sk‖ < µǫ
1

p−q+β and by 1
2ωkǫ when ‖sk‖ ≥ µǫ

1
p−q+β . As a consequence, we obtain the

following lemma.

Lemma 3.5. Suppose that ωk ≥ ωmin > 0 for all k. Then each iteration of the ARpDA
algorithm involves at most 2 (approximate) evaluations of the objective function and at most
1 + νmax(ǫ) (approximate) evaluations of its p first derivatives, where

νmax(ǫ) =

⌊

1

log(γε)

{

log

(

ϑ(1− κω)

6(1 + κω)2
ωminǫ

)

− log(κε)

}⌋

. (3.30)
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Proof. The upper bound on the (approximate) function evaluations immediately follows from
the observation that, as mentioned at the beginning of the current paragraph, these computations
occur at most twice in Step 3 of Algorithm 2.1. Concerning the second part of the thesis we notice

that, from Lemma 3.3, in Step 2.4 of Algorithm 3.3 we have to make {∇j
xf(xk)}

p
j=1 three times

more accurate than the desired accuracy in {∇j
dT

mk
q (sk, 0)}

q
j=1, when ‖sk‖ < µǫ

1
p−q+β (the input

values for the absolute accuracy values in the VERIFY call are {3ǫj}
q
j=1). Thus, the VERIFY

Algorithm stops whenever

max
j∈{1,...,q}

εj ≤
ϑ(1− κω)ωkǫ

6(1 + κω)
2 .

We may thus conclude from Lemma 3.1 that no further reduction in {εj}
p
j=1 (and hence no further

approximation of {∇j
xf(xk)}

p
j=1) will occur once iε, the number of decreases in {εj}

p
j=1, is large

enough to ensure that

γiǫε [ max
j∈{1,...,p}

εj,0] ≤
ϑ(1− κω)

6(1 + κω)
2ωminǫ

(Note that this inequality could hold for iǫ = 0.) Because of our assumption that ωk ≥ ωmin and
(3.11), the above inequality is then verified when

iǫ ≤

⌊

1

log(γε)

{

log

(

ϑ(1− κω)

6(1 + κω)
2ωminǫ

)

− log(κε)

}⌋

,

which concludes the proof when taking into account that the derivatives must be computed at
least once per iteration.

Note that, for simplicity, we have ignored the fact that only q ≤ p derivatives need to be evaluated
in Steps 1.2. Lemma 3.5 can obviously be refined to reflect this observation.

We conclude this section by a comment on what happens whenever exact objective function
and derivatives are used. In that case the (exact) derivatives are computed only once per iteration
of the ARpDA algorithm (in Step 1.2 for the first q and in Step 2.1 for the remaining p − q)
and every other call to VERIFY returns flag = 1 or flag = 2. Moreover, there is no need
to recompute f to obtain (2.22) in Step 3. The evaluation complexity of a single iteration of
the ARpDA algorithm then reduces to a single evaluation of f and its first p derivatives (and
νmax(ǫ) = 1 for all k), as expected.

4. Evaluation complexity of the deterministic ARpDA. This section is devoted to the
evaluation complexity analysis of the ARpDA algorithm in the deterministic context. We start by
providing a simple lower bound on the model decrease.

Lemma 4.1. [12, Lemma 3.1] The mechanism of the ARpDA algorithm guarantees that, for
all k ≥ 0,

∆T
f

p(xk, sk, ωk) >
σk

(p+ β)!
‖sk‖

p+β , (4.1)

and so (2.23) is well-defined.

Proof. We have that

0 < mk(0)−mk(sk) = T p(xk, 0, ωk)− T p(xk, sk, ωk)−
σk

(p+ β)!
‖sk‖

p+β .
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We next show that the regularization parameter σk has to remain bounded, even in the presence
of inexact computation of f and its derivatives. This lemma hinges heavily on (2.13), (2.21) and
(2.22).

Lemma 4.2. Let f ∈ Cp,β(IRn). Then, for all k ≥ 0,

σk ≤ σmax
def
= max

[

σ0,
γ3(L+ 3)

1− η2

]

(4.2)

and

ωk ≥ ωmin
def
= min

[

κω,
1

σmax

]

. (4.3)

Proof. Assume that

σk ≥
L+ 3

1− η2
. (4.4)

Also observe that, because of the triangle inequality, (3.22) (as ensured by Lemma 3.4) and (2.22),

|T
f

p(xk, sk, ωk)− T fp (xk, sk)| ≤ |fk(xk, ωk)− f(xk)|

+|∆T
f

p(xk, sk, ωk)−∆T fp (xk, sk)|

≤ 2ωk|∆T
f

p(xk, sk, ωk)|

and hence, again using the triangle inequality, (2.21), (2.5), (2.25), (4.1) and (4.4),

|ρk − 1| ≤
|fk(xk + sk, ωk)− T

f

p(xk, sk, ωk)|

∆T
f

p(xk, sk, ωk)

≤ 1

∆T
f

p(xk, sk, ωk)

[

|fk(xk + sk, ωk)− f(xk + sk)|+ |f(xk + sk)− T fp (xk, sk)|

+|T
f

p(xk, sk, ωk)− T fp (xk, sk)|
]

≤ 1

∆T
f

p(xk, sk, ωk)

[

|f(xk + sk)− T fp (xk, sk)|+ 3ωk∆T
f

p(xk, sk, ωk)
]

≤ 1

∆T
f

p(xk, sk, ωk)

[

L
(p+ β)!

‖sk‖
p+β +

3∆T
f

p(xk, sk, ωk)
σk

]

< L
σk + 3

σk

≤ 1− η2

and thus that ρk ≥ η2. Then iteration k is very successful in that ρk ≥ η2 and, because of (2.24),
σk+1 ≤ σk. As a consequence, the mechanism of the algorithm ensures that (4.2) holds. Observe
now that this result and (2.25) imply that, for all k, ωk is such that min[κω, σ

−1
max] ≤ ωk ≤ κω,

yielding (4.3).
It is important to note that (4.3) in this lemma provides the lower bound on ωk required in
Lemma 3.5. We now borrow a technical result from [12].

Lemma 4.3. [12, Lemma 2.4] Let s be a vector of IRn and p ∈ IN0 and β ∈ (0, 1] such that
j ∈ {0, . . . , p}. Then

‖∇j
s

(

‖s‖p+β
)

‖[j] ≤
(p+ β)!

(p− j + β)!
‖s‖p−j+β . (4.5)
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Our next move is to prove a lower bound on the step norm. While the proof of this result is clearly
inspired from that of [12, Lemma 3.3], it nevertheless crucially differs when approximate values
are considered instead of exact ones.

Lemma 4.4. Let f ∈ Cp,β(IRn). Then, for all k ≥ 0 such that the ARpDA algorithm does
not terminate at iteration k + 1,

‖sk‖ ≥ κsǫ
1

p−q+β , (4.6)

where

κs
def
= min

{

µ,

[

(1− κω)(1− ϑ)(p− q + β)!

(1 + κω)(L+ σmax + θ(1 + κω))

]
1

p−q+β

}

. (4.7)

Proof. If ‖sk‖ ≥ µǫ
1

p−q+β , the result is obvious. Suppose now that

‖sk‖ < µǫ
1

p−q+β . (4.8)

Since the algorithm does not terminate at iteration k + 1, we have that

φ
δk
f,q(xk+1) >

ǫ

1 + ωk
χq(δk)

and therefore, using (3.15), that

φδkf,q(xk+1) >
1− ωk
1 + ωk

ǫ χq(δk). (4.9)

Let the global minimum in the definition of φδkf,q(xk+1) be achieved at d with ‖d‖ ≤ δk. Then,
using (2.7), the triangle inequality and (4.5), we deduce that

φδkf,q(xk+1) = −

q
∑

ℓ=1

1

ℓ!
∇ℓ
xf(xk+1)[d]

ℓ

≤

∣

∣

∣

∣

∣

q
∑

ℓ=1

1

ℓ!
∇ℓ
xf(xk+1)[d]

ℓ −

q
∑

ℓ=1

1

ℓ!
∇ℓ
sT

f
p (xk, sk)[d]

ℓ

∣

∣

∣

∣

∣

−

q
∑

ℓ=1

1

ℓ!
∇ℓ
sT

f
p (xk, sk)[d]

ℓ

≤

q
∑

ℓ=1

1

ℓ!

[

‖∇ℓ
xf(xk+1)−∇ℓ

sT
f
p (xk, sk)‖[ℓ]

]

δℓk

−

q
∑

ℓ=1

1

ℓ!

(

∇ℓ
s

[

T fp (xk, s) +
σk

(p+ β)!
‖s‖p+β

]

s=sk

)

[d]ℓ

+

q
∑

ℓ=1

σk
ℓ!(p− ℓ+ β)!

‖sk‖
p−ℓ+βδℓk. (4.10)

Now, because of (2.16), (2.7) (for mk at sk) and the fact that ‖d‖ ≤ δk, we have that

−

q
∑

ℓ=1

1

ℓ!

(

∇ℓ
s

[

T fp (xk, s) +
σk

(p+ β)!
‖s‖p+β

]

s=sk

)

[d]ℓ = ∆Tmkq (sk, d) ≤ φδkmk,q(sk).

Then, as ‖sk‖ < µǫ
1

p−q+β < 1 because of (4.8), we may use (3.23) (ensured by Lemma 3.4) and
(2.6) and distinguish the cases where the maximum in (3.23) is attained in its first or its second



Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations 19

argument. In the latter case, we deduce from (4.10) that

φδkf,q(xk+1) ≤

q
∑

ℓ=1

L

ℓ!(p− ℓ+ β)!
‖sk‖

p−ℓ+βδℓk + (1 + κω)
θ χq(δk)

(p− q + β)!
‖sk‖

p−q+β

+

q
∑

ℓ=1

σk
ℓ!(p− ℓ+ β)!

‖sk‖
p−ℓ+βδℓk

≤

[

L+ σk + θ(1 + κω)
]

χq(δk)

(p− q + β)!
‖sk‖

p−q+β ; (4.11)

otherwise, (4.10) guarantees that

φδkf,q(xk+1) ≤
(L+ σk)χq(δk)

(p− q + β)!
‖sk‖

p−q+β +
ϑ(1− κω)

1 + κω
ǫχq(δk). (4.12)

Using now (4.9), (2.27), (4.8), (4.11) and (4.12),we thus have that

‖sk‖≥min

{

µǫ
1

p−q+β ,

[

ǫ(1− κω)(p− q + β)!
(1 + κω)(L+ σk + θ(1 + κω))

]
1

p−q+β

,

[

ǫ(1− κω)(1− ϑ)(p− q + β)!
(1 + κω)(L+ σk)

]
1

p−q+β

}

≥min

{

µǫ
1

p−q+β ,

[

ǫ(1− κω)(1− ϑ)(p− q + β)!
(1 + κω)(L+ σk + θ(1 + κω))

]
1

p−q+β

}

,

where we have used the fact that θ ∈ (0, 1) to obtain the last inequality. Then (4.6) follows from
(4.2).

We now combine all the above results to deduce an upper bound on the maximum number of
successful iterations, from which a final complexity bound immediately follows.

Theorem 4.5. Let f ∈ Cp,β(IRn) and ǫ ∈ (0, 1) be given. Then the ARpDA algorithm
using the modified Steps 1 (on page 10) and 2 (on page 12) produces an iterate xǫ such that
(2.10) or (3.21) holds in at most

⌊

κp(f(x0)− flow)
(

ǫ−
p+β
p−q+β

)⌋

+ 1 (4.13)

successful iterations,

τ(ǫ)
def
=

⌊{

⌊

κp(f(x0)− flow)
(

ǫ−
p+β
p−q+β

)

+ 1
⌋

(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(

σmax

σ0

)}⌋

(4.14)
iterations in total, 2τ(ǫ) (approximate) evaluations of f and (1 + νmax(ǫ))τ(ǫ) approximate
evaluations of {∇j

xf}
p
j=1, where σmax is given by (4.2), ωmin by (4.3), νmax(ǫ) by (3.30), and

where

κp
def
=

(p+ β)!

η1(1− α)σmin
max

{

1

µp+β
,

[

(1 + κω)(L+ σmax + θ(1 + κω))

(1− κω)(1− ϑ)(p− q + β)!

]

p+β
p−q+β

}

. (4.15)

Proof. At each successful iteration k before termination the algorithm guarantees the decrease

f(xk)− f(xk+1) ≥ [fk(xk, ωk)− fk(xk+1, ωk)]− 2ωk∆T
f

p(xk, sk, ωk)

≥ η1∆T
f

p(xk, sk, ωk)− αη1∆T
f

p(xk, sk, ωk)

>
η1(1− α)σmin

(p+ β)!
‖sk‖

p+β ,

(4.16)
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where we used (2.18), (2.21), (2.22), (2.23), (4.1) and (2.24). Moreover we deduce from (4.16) and
(4.6) that

f(xk)− f(xk+1) ≥ κ−1
p ǫ

p+β
p−q+β where κ−1

p
def
=

η1(1− α)σminκ
p+β
s

(p+ β)!
. (4.17)

Thus, since {f(xk)} decreases monotonically,

f(x0)− f(xk+1) ≥ κ−1
p ǫ

p+β
p−q+β |Sk|.

Using that f is bounded below by flow, we conclude that

|Sk| ≤ κp(f(x0)− flow)ǫ
− p+β
p−q+β (4.18)

until termination, and the desired bound on the number of successful iterations follows. Lemma 2.2
is then invoked to compute the upper bound on the total number of iterations, and Lemma 3.5 to
deduce the upper bounds on the number of evaluations of f and its derivatives.
We emphasize that (4.13) was shown in [12] to be optimal for a quite wide class of minimization
algorithms. The slightly weaker bound (1 + νmax(ǫ))τ(ǫ) may be seen as the (very modest) price
to pay for allowing inexact evaluations.

Focusing on the order in ǫ and using (4.14), we therefore obtain the following condensed result
on evaluation complexity for nonconvex optimization.

Theorem 4.6. Let f ∈ Cp,β(IRn). Then, given ǫ ∈ (0, 1), the ARpDA algorithm using the
modified Steps 1 (on page 10) and 2 (on page 12) needs at most

O
(

ǫ−
p+β
p−q+β

)

iterations and (approximate) evaluations of f

and at most

O
(

| log(ǫ)|ǫ−
p+β
p−q+β

)

(approximate) evaluations of the p first derivatives

to compute an (ǫ, δ)-approximate q-th-order-necessary minimizer for the set-constrained prob-
lem (2.1).

In particular, if the p-th derivative of f is assumed to be globally Lipschitz rather than merely
Hölder continuous (i.e. if β = 1), these orders reduce to

O
(

ǫ−
p+1
p−q+1

)

iterations and (approximate) evaluations of f

and at most

O
(

| log(ǫ)|ǫ−
p+1
p−q+1

)

(approximate) evaluations of the p first derivatives.

As indicated in the comment at the end of Section 3, all O(| log(ǫ)|) terms reduce to a constant
independent of ǫ if exact evaluations of f and its derivatives are used, and the above results then
recover the optimal complexity results of [12].

We conclude this section by commenting on the special case where the objective function
evaluations are exact and that of the derivatives inexact. We first note that this case is already
covered by the theory presented above (since (2.21) and (2.22) automatically holds as their left-
hand side is identically zero), but this remark also shows that the ARpDA algorithm can be
simplified by replacing the computation of f(xk + sk, ωk) by that of f(xk + sk) and by skipping
the verification and possible recomputation of f(xk, ωk) entirely. As consequence, the ARpDA
algorithm only evaluates the exact objective function f once per iteration, and the maximum
number of such evaluations is therefore given by τ(ǫ) instead of 2τ(ǫ), while the maximum number
of (inexact) derivatives evaluations is still given by (1 + νmax(ǫ))τ(ǫ).
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5. A variant of the ARpDA algorithm. We now describe a variant of the ARpDA algo-
rithm for which an even better complexity can be proved, but at the price of a more restrictive
dynamic accuracy strategy. In the Step 1.0 of the ARpDA algorithm, we allow the choice of an
arbitrary set of {εj,0}

p
j=1 with the constraint that εj,0 ≤ κε for j ∈ {1, . . . , p}. This allows these

accuracy thresholds to vary non-monotonically from iteration to iteration, providing considerable
flexibility and allowing large inaccuracies even if these thresholds were made small in past itera-
tions due to local nonlinearity. A different, more rigid, strategy is also possible: suppose that the
thresholds {εj,0}

p
j=1 are not reset at each iteration, that is

Step 1.1 is only executed for k = 0. (5.1)

This clearly results in a monotonic decrease of each εj across all iterations. As a consequence,
νmax(ǫ) in (3.30) now bounds the total number of reductions of the εj over all iterations, i.e. on
the entire run of the algorithm. We then deduce that the total number of approximate evaluations
of the derivatives is then bounded by νmax(ǫ) + τ(ǫ) (instead of (1 + νmax(ǫ))τ(ǫ)) and we may
establish the worst-case complexity of the resulting “monotonic” variant as follows.

Theorem 5.1. Let f ∈ Cp,β(IRn) and ǫ ∈ (0, 1) be given. Then the ARpDA algorithm
using the modified Steps 1 (on page 10) and 2 (on page 12) as well as the modified rule (5.1)
produces an iterate xǫ such that (2.10) or (3.21) holds in at most (4.13) successful iterations,
τ(ǫ) iterations in total, 2τ(ǫ) (approximate) evaluations of f and νmax(ǫ) + τ(ǫ) approximate
evaluations of {∇j

xf}
p
j=1, where τ(ǫ) is given by (4.14), κp is given by (4.15), σmax by (4.2),

ωmin by (4.3) and νmax(ǫ) by (3.30).

As above, this complexity bound can be condensed to

O
(

ǫ−
p+β
p−q+β

)

iterations and (approximate) evaluations of f

O
(

| log(ǫ)|+ ǫ−
p+β
p−q+β

)

(approximate) evaluations of the p first derivatives,
(5.2)

typically improving on Theorem 4.6. When p = 2, q = 1 and β = 1, the ARpDA variant using the
more restrictive accuracy strategy (5.1) requires at most

O
(

| log(ǫ)|+ ǫ−3/2
)

(approximate) evaluations of the gradient, which corresponds to the bound derived for the ARC-
DFO algorithm of [11]. This is not surprising as this latter algorithm uses a monotonically decreas-
ing sequence of finite-difference stepsizes, implying monotonically decreasing gradient-accuracy
thresholds.

One should however notice that the improved bound (5.2) comes at the price of asking, for
potentially many iterations, an accuracy on {∇j

xf}
p
j=1 which is tighter than what is needed to

ensure progress of the minimization. In practice, this might be a significant drawback. We will thus
restrict our attention, in what follows, to the original ARpDA algorithm, but similar developments
are obviously possible for the “monotonic” variant just discussed.

6. Application to unconstrained and bound-constrained first- and second-order
nonconvex inexact optimization. Because of its wide-ranging applicability, the framework
discussed above may appear somewhat daunting in its generality. Moreover, the fact that it
involves (possibly constrained) global optimization subproblems in several of its steps may suggest
that it has to remain conceptual. We show in this section that this is not the case, and stress
that it is much simpler when specialized to small values of p and q (which are, for now, the most
practical ones) and that our approach leads to elegant and implementable numerical algorithms.
To illustrate this point, we now review what happens for p ≤ 2.

We first discuss the case where one seeks to compute a first-order critical point for an un-
constrained optimization problem using approximate function values as well as approximate first
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derivatives. For simplicity of exposition, we will also assume that the gradient of f is Lipschitz
(rather than Hölder) continuous. In our general context, this means that we consider the case
where q = 1, p = 1, β = 1 and F = IRn. We first note that, as pointed out in (2.8),

φδf,1(x) = ‖∇1
xf(x)‖δ and φ

δ

f,1 = ‖∇1
xf(x)‖δ irrespective of δ ∈ (0, 1], (6.1)

which means that, since we can choose δ = 1, Step 1 of the ARpdA algorithm reduces to the
computation of an approximate gradient ∇1

xf(xk) with relative error ωk and verification that ǫ-
approximate optimality is not yet achieved. If that is the case, computing sk at Step 2 is also
extremely simple since it is easy to verify that

sk = s∗k = −
1

σk
∇1
xf(xk).

Lemma 2.3 then ensures that this step is acceptable for some δk ∈ (0, 1], the value of which being
irrelevant since it is not used in Step 1 of the next iteration. Moreover, if the relative error on
∇1
xf(xk) is bounded by ωk, then

|∆T
f

1 (xk, sk)−∆T f1 (xk, sk)| ≤ ‖∇1
xf(xk)−∇1

xf(xk)‖
‖∇1

xf(xk)‖
σk

≤ ωk
‖∇1

xf(xk)‖
2

σk

= ωk∆T
f

1 (xk, sk)

and (2.13) automatically holds, so that no iteration is needed in Algorithm 3.3. The resulting
algorithm, where we have made the modified Step 1 explicit, is given as Algorithm 6.1 (AR1DA)
on the next page.
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Algorithm 6.1: The AR1DA Algorithm

Step 0: Initialization. An initial point x0 ∈ IRn and an initial regularization parameter
σ0 > 0 are given, as well as an accuracy level ǫ ∈ (0, 1) and an initial relative accuracy
ω0 ≥ 0. The constants α, κω, κε, η1, η2, γ1, γ2, γ3 and σmin are also given and satisfy
σmin ∈ (0, σ0],

0 < η1 ≤ η2 < 1, 0 < γ1 < 1 < γ2 < γ3,

κε ∈ (0, 1] α ∈ (0, 1), κω ∈ (0, 1
2αη1] and ω0 = min

[

κω,
1

σ0

]

.

Set k = 0.
Step 1: Compute the optimality measure and check for termination. Initialize

ε1,0 = κε and set i = 0. Do

1. compute ∇1
xf(xk) with ‖∇1

xf(xk)−∇1
xf(xk)‖ ≤ ε1,i and increment i by one.

2. if ‖∇1
xf(xk)‖ ≤ ǫ/(1 + ωk), terminate with xǫ = xk;

3. if ε1,i ≤ ωk‖∇1
xf(xk)‖, go to Step 2;

4. set ε1,i+1 = γεε1,i and return to item 1 in this enumeration.
Step 2: Step calculation. Set

sk = −∇1
xf(xk)/σk and ∆T

f

1 (xk, sk, ωk) = ‖∇1
xf(xk)‖

2/σk.

Step 3: Acceptance of the trial point.
Compute fk(xk + sk, ωk) ensuring that

|fk(xk + sk, ωk)− f(xk + sk)| ≤ ωk|∆T
f

1 (xk, sk, ωk)|. (6.2)

Also ensure (by setting fk(xk, ωk) = fk−1(xk, ωk−1) or by (re)computing fk(xk, ωk))
that

|fk(xk, ωk)− f(xk)| ≤ ωk|∆T
f

1 (xk, sk, ωk)| (6.3)

Then define

ρk =
fk(xk, ωk)− fk(xk + sk, ωk)

∆T
f

1 (xk, sk, ωk)
. (6.4)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.
Step 4: Regularization parameter update. Set

σk+1 ∈







[max(σmin, γ1σk), σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(6.5)

Step 5: Relative accuracy update. Set

ωk+1 = min

[

κω,
1

σk+1

]

. (6.6)

Increment k by one and go to Step 1.

Theorem 4.6 then guarantees that the AR1DA Algorithm will find an ǫ-approximate first-order
minimizer for the unconstrained version of problem (2.1) in at most O

(

ǫ−2
)

iterations and approx-
imate evaluations of the objective function (which is proved in [12] to be optimal) and at most
O
(

| log(ǫ)|ǫ−2
)

approximate evaluations of the gradient. Note that

1. the accuracy requirement is truly adaptive and the absolute accuracy ε1,i may remain
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quite large as long as ‖∇1
xf(xk)‖ itself remains large, as shown by item 3 in Step 1. Note

that, in the worst case, Step 1 terminates whenever ε1,i ≤ ǫ ωk/(1 + ωk) as one of the

following situation occurs: either ‖∇1
xf(x)‖ ≤ ǫ/(1+ωk) and it terminates in Step 1.2, or

‖∇1
xf(x)‖ > ǫ/(1 + ωk) > ε1,i/ωk and termination occurs in Step 1.3.

2. The accuracy requirement for computing f does not depend on the absolute accuracy of
the gradient, but only on its norm (squared). At initial iterations, this may be quite large.

3. The AR1DA Algorithm is very close in spirit to the trust-region with dynamic accuracy
of [16, Sections 8.4.1.1 and 10.6] and, when values of f are computed exactly, essentially
recovers a proposal in [8]. It is also close to the proposal of [24], which is based on an
Armijo-like linesearch and has similar accuracy requirements.

We now turn to the case where one seeks a first-order critical point for an unconstrained
problem using approximate gradients and Hessians (under the assumption that the exact Hessian
is Lispchitz continuous). As for the case p = q = 1, we have that (6.1) holds, making the
verification of optimality in Step 1 relatively easy. Computing sk is now more complicated but
still practical, as it now implies minimizing the regularized quadratic model mk starting from xk
until a step sk is found such that

‖sk‖ ≥ µǫ
1
2 or φ

δ

mk,1
(sk, ωk) = ‖∇1

smk(sk)‖ ≤ 1
2θ‖sk‖

2

(as proposed in [10], see also [20, 23, 9, 17]), with the additional constraint that, for sk 6= 0,

max[ε1,i, ε2,i] ≤ ωk
∆T

f

2 (xk, sk, ωk)

χ2(‖sk‖)
(6.7)

where

∆T
f

2 (xk, sk, ωk) = −∇1
xf(xk)

T sk − 1
2s
T
k∇

2
xf(xk)sk.

The resulting algorithm AR2DA is quite similar to AR1DA and is omitted for brevity. We
note that

1. Algorithm AR2DA is guaranteed by Theorem 4.6 to find an ǫ-approximate first-order min-
imizer for the unconstrained version of problem (2.1) in at most O

(

ǫ−3/2
)

iterations and
approximate evaluations of the objective function (which is proved in [12] to be optimal)
and at most O

(

| log(ǫ)|ǫ−3/2
)

approximate evaluations of the gradient and Hessian.

2. As for AR1DA, the absolute accuracies required by AR2DA on the approximate function,
gradient and Hessian only depend on the magnitude of the Taylor increment, which is
typically quite large in early iterations. The relative errors on the latter two remain
bounded away from zero.

3. The absolute accuracies required on the approximate gradient and Hessian are comparable
in magnitude, although (6.7) could be exploited to favour one with respect to the other.

The case where p = 2 and q = 2 (i.e. when second-order solutions are sought) is also compu-

tationally quite accessible: calculating the optimality measure φ
δk
f,1(xk, ωk) or φ

δk
mk,1

(sk, ωk) now
involve a standard trust-region subproblem, for which both exact and approximate numerical
solvers are known (see [16, Chapter 7] for instance), but the rest of the algorithm — in particular
its adaptive accuracy requirement — is very similar to what we just discussed (see also [12]).
Theorem 4.6 then ensures that resulting method converges to an ǫ-approximate second-order-
necessary minimizer for the unconstrained version of problem (2.1) in at most O

(

ǫ−3
)

iterations

and approximate evaluations of the objective function and at most O
(

| log(ǫ)|ǫ−3
)

approximate
evaluations of the gradient and Hessian.

We conclude this section by a brief discussion of the case where q = 1 and p ∈ {1, 2} as
before, but where F is now defined by bound constraints. It is clear that evaluating and enforcing
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such constraints (by projection, say) has negliglible cost and therefore falls in our framework. In

this case, the calculations of φ
δk
f,1(xk, ωk) or φ

δk
mk,1

(sk, ωk) now involve simple linear optimization
problems∗, which is computationally quite tractable. If p = 1, Step 2.2 and 2.3 involve convex
quadratic optimization, while they involve minimizing a regularized quadratic model if p = 2. All
results remain the same, and the ARpDA algorithm is then guaranteed to find a bound-constrained
approximate first-order approximate minimizer in at most O

(

ǫ−2
)

or O
(

ǫ−3/2
)

iterations and
approximate evaluations of the objective function (which is proved in [12] to be optimal) and at
most O

(

| log(ǫ)|ǫ−2
)

or O
(

| log(ǫ)|ǫ−3/2
)

approximate evaluations of the gradient and Hessian. The
same algorithms and results obviously extend to the case where F is a convex polyhedral set or
any closed non-empty convex set, provided the cost of the projection on this set remains negligible
compared to that of (approximately) evaluating the objective function and its derivatives.

7. A stochastic viewpoint on ARpDA.

7.1. Probabilistic complexity. In this section we consider the case where the bounds
{εj}

p
j=1 on the absolute errors on the derivative tensors {∇j

xf(x)}
p
j=1 are satisfied with proba-

bility at least (1− t), with t ∈ (0, 1). This may occur, for instance, if the approximate derivative
tensors are obtained by some stochastic sampling scheme, as we detail below. We therefore assume
that

Pr
[

‖∇j
xf(xk)−∇j

xf(xk)‖[j] ≤ εj

]

≥ (1− t) for each j ∈ {1, . . . , p}. (7.1)

We also assume that inequalities (2.21) and (2.22) in Step 3 of the ARpDA algorithm are satisfied
with probability at least (1− t), i.e.

Pr
[

|fk(xk + sk, ωk)− f(xk + sk)| ≤ ε0

]

≥ 1− t, (7.2)

and

Pr
[

|fk(xk, ωk)− f(xk)| ≤ ε0

]

≥ 1− t (7.3)

where we have defined ε0
def
= ωk|∆T

f

p(xk, sk, ωk)|. Clearly, different values for t could be chosen
in (7.1), one for each index (tensor order) j ∈ {1, ..., p}. Similarly, different values of t in (7.2)
and (7.3) could be considered. However, for the sake of simplicity, we assume here that all the
inequalities involved in (7.1)–(7.3) hold with the same fixed lower bound (1− t) on the probability
of success. We also assume that the events in (7.1)–(7.3) are independent.

Stochastic variants of trust-region and adaptive cubic regularization methods have been ana-
lyzed in [2, 7, 14, 29, 31]. In [7, 14], complexity results are given in expectation, while the analysis
is carried out in probability in [2, 29, 31]. We choose to follow the high-probability approach of
[29, 31], where an overall and cumulative success of (7.1)–(7.3) is assumed along all the iterations
up to termination.

We stress that Algorithms 3.2 and 3.3 terminates independently of the satisfaction of the
accuracy requirements on the tensor derivatives. This is due to the fact that termination relies on
the inequality (3.6). Moreover, during the iterations of either of these algorithms before the last,
it may happen that the accuracy on the tensor derivatives fails to be achieved, but this has no
impact on the worst-case complexity. Satisfying the accuracy requirement is only crucial in the
last iteration of Algorithm 3.2 or 3.3 (that is in Steps 1.2 and 2.2). Let Er(S) be the event: “the
relations

‖∇j
xf(xk)−∇j

xf(xk)‖[j] ≤ εj for all j ∈ {1, . . . , r}

hold for some j at Step S of the last iteration of the relevant algorithm”. In Step 1.2, inexact
values are computed for the first q derivatives, and the probability that event Eq(1.2) occurs is

∗Formerly known as linear programming problems, or LPs.
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therefore at least (1− t)q. Similarly, the probability that event Eq(2.2) occurs is at least (1− t)p.
Finally, at Step 3 of the ARpDA algorithm, the probability that both (2.21) and (2.22) hold is at
least (1 − t)2. Then, letting for i ∈ {1, . . . , k}, E[i] be the event: “Inequalities (2.13), (2.21) and
(2.22) hold at iteration i, of the ARpDA algorithm”, the probability that E[i] occurs is then at
least (1 − t)p+q+2. Finally, letting E(k) be the event: “E[i] occurs for all iterations i ∈ {1, . . . , k}
of the ARpDA algorithm”, we deduce that

Pr
[

E(k)
]

≡ Pr

[

k
⋂

i=1

E[i]

]

≥ (1− t)k(p+q+2).

Thus, requiring that the event E(k) occurs with probability at least 1− t, we obtain that

Pr
[

E(k)
]

≥ (1− t)k(p+q+2) = 1− t, i.e., t = 1− (1− t)
1

k(p+q+2) = O

(

t

k(p+ q + 2)

)

.

Taking into account that, when (2.13), (2.21) and (2.22) hold, the ARpDA algorithm terminates

in at most k = O
(

ǫ−
p+β
p−q+β

)

iterations (as stated by Theorem 4.6), we deduce the following result.

Theorem 7.1. Let f ∈ Cp,β(IRn). Suppose that the probabilistic assumptions of this section
hold and that, at each of iteration of the ARpDA algorithm, the probability t satisfies

t = O

(

t ǫ
p+β
p−q+β

(p+ q + 2)

)

. (7.4)

Then, given ǫ ∈ (0, 1), the conclusions of Theorem 4.6 hold with probability at least (1− t).

As a consequence, when p = q = 2 and β = 1 we have to choose t = O
(

1
6 t ǫ

3
)

, while, when

p = q = β = 1, we have to choose t = O
(

1
4 t ǫ

2
)

.
We stress that the above analysis is unduly pessimistic in the case where p = q = 1. Indeed, as

already noticed in Section 6, no reduction in {εj} is necessary at Step 2, as (2.13) is automatically

enforced whenever the relative error on the first derivative ∇1
xf(x) is bounded by ωk. Noting that

this last event has probability at least 1 − t, we can conclude that Pr(E[i]) ≥ (1 − t)3 and to get

the optimal complexity O
(

ǫ−2
)

with probability at least 1 − t, we need to choose t = O
(

1
3 t ǫ

2
)

.
We also emphasize that the purpose of Theorem 7.1 is limited to offer guidance on desirable value
of t and not to prescribe an algorithmically binding bound. Indeed some of the constants involved
in the bound of Theorem 4.6 (and thus of Theorem 7.1) are typically unknown a priori (which is
why we have not been more specific in (7.4)).

7.2. Sample size in subsampling for finite-sum problems. In what follows, we now
focus on the solution of large-scale instances of the finite-sum problems arising in machine learning
and data analysis, that are modelled as

min
x∈F

f(x) =
1

N

N
∑

i=1

ψi(x), (7.5)

with N > 0 and ψi : IR
n → IR. Restricting ourselves to the cases where p ≤ 2, we discuss the

application of Algorithm AR1DA and AR2DA to problem (7.5). In this case, the approximation
of the objective function’s value and of first and second derivatives is obtained by a subsampling
procedures, i.e. these quantities are approximated by randomly sampling component functions ψi.
More precisely, at iteration k these approximations take the form:

fk(xk, ωk) =
1

|Dk,1|

∑

i∈Dk,1

ψi(xk), fk(xk + sk, ωk) =
1

|Dk,2|

∑

i∈Dk,2

ψi(xk + sk),
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∇1
xf(xk) =

1

|Gk|

∑

i∈Gk

∇1
xψi(xk), and ∇2

xf(xk) =
1

|Hk|

∑

i∈Hk

∇2
xψi(xk),

where Dk,1, Dk,2, Gk and Hk are subsets of {1, 2, . . . , N}. The question then arises of estimating
the cardinality of these sample sets in order to ensure that the approximations of the objective
function’s value and its first and second derivatives satisfy (7.1) for j = 1 and j = 2, (7.2) and
(7.3). This issue can be addressed using the operator-Bernstein inequality given in [27]. In the
next theorem we derive our final result concerning the sample sizes for subsampling the objective
function and its derivatives up to order two.

Theorem 7.2. Suppose that there exist non-negative constants {κψ,j}
2
j=0 such that, for

x ∈ IRn and all j ∈ {0, 1, 2}

max
i∈{1,...,N}

‖∇j
xψi(x)‖ ≤ κψ,j(x). (7.6)

Let t ∈ (0, 1) and suppose that a subsample Ak is chosen randomly and uniformly from
{1, . . . , N} and that, for some j ∈ {0, 1, 2}, one computes

∇j
xf(x) =

1

|Ak|

∑

i∈Ak

∇j
xψi(x),

with

|Ak| ≥ min

{

N,

⌈

4κψ,j(x)

εj

(

2κψ,j(x)

εj
+

1

3

)

log

(

d

t

)⌉}

, (7.7)

where

d =







2, if j = 0,
n+ 1, if j = 1,
2n, if j = 2.

Then condition (7.1) holds for x = xk with probability at least (1−t) if j ∈ {1, 2}, or, if j = 0,
each of the conditions (7.2) and (7.3) holds with probability at least (1− t) for x = xk + sk
and x = xk, respectively.

Proof. Let Ak ⊆ {1, . . . , N} be a sample set of cardinality |Ak|. Consider j ∈ {0, 1, 2} and
|Ak| random tensors Zu(x) such that,

Pr
[

Zu(x) = ∇j
xψi(x)

]

=
1

N
, (i ∈ {1, . . . , N}).

For u ∈ Ak, let us define

Xu
def
=
(

Zu(x)−∇j
xf(x)

)

, ∇j
xf(x)

def
=

1

|Ak|

∑

u∈Ak

Zu(x)

and

X
def
=
∑

u∈Ak

Xu = |Ak|
(

∇j
xf(x)−∇j

xf(x)
)

.

Since (7.5) gives that

1

N

N
∑

i=1

∇j
xψi(x) = ∇j

xf(x),
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we deduce that

E(Xu) =
1

N

N
∑

i=1

(

∇j
xψi(x)−∇j

xf(x)
)

= 0, u ∈ Ak.

Moreover, assuming Zu(x) = ∇j
xψl(x) for some l ∈ {1, . . . , N} and using (7.6), we have that

‖Xu‖ ≤

∥

∥

∥

∥

∥

N − 1

N
∇j
xψl(x)−

1

N

∑

i∈{1,...,N}\{l}

∇j
xψi(x)

∥

∥

∥

∥

∥

≤ 2
N − 1

N
κψ,j(x) ≤ 2κψ,j(x),

so that the variance of X can be bounded as follows:

v(X) = max
[

‖E(XXT )‖, ‖E(XTX)‖
]

= max
[∥

∥

∥

∑

u∈Ak

E(XuX
T
u )
∥

∥

∥
,
∥

∥

∥

∑

u∈Ak

E(XT
uXu)

∥

∥

∥

]

≤ max
[

∑

u∈Ak

‖E(XuX
T
u )‖,

∑

u∈Ak

‖E(XT
uXu)‖

]

≤ max
[

∑

u∈Ak

E(‖XuX
T
u ‖),

∑

u∈Ak

E(‖XT
uXu‖)

]

≤
∑

u∈Ak

E(‖Xu‖
2) ≤ 4|Ak|κ

2
ψ,j(x),

in which the first and the third inequalities hold because of the triangular inequality, while the
second is due to the Jensen’s inequality (note that the spectral norm ‖ · ‖ is convex). Therefore,
according to the Operator-Bernstein Inequality stated in [27, Theorem 6.1.1], we obtain that

Pr
[

‖∇j
xf(x)−∇j

xf(x)‖ ≥ ǫj

]

= Pr
[

‖X‖ ≥ ǫj |Ak|
]

≤ d e
−

ǫ2
j
|Ak|

4κψ,j(x)(2κψ,j(x)+ 1
3 ǫj) , (7.8)

with d = 2 if j = 0, d = n+1 if j = 1 and d = 2n if j = 2. Then, bounding the right-hand side of
(7.8) by t, taking logarithms and extracting |Ak| gives (7.7).

In particular, Theorem 7.2 gives the lower bounds

|Dk,ℓ| ≥ min

{

N,

⌈

4κψ,j(x)

ε0

(

2κψ,j(x)

ε0
+

1

3

)

log

(

2

t

)⌉}

, ℓ = 1, 2, (7.9)

|Gk| ≥ min

{

N,

⌈

4κψ,j(x)

ε1

(

2κψ,j(x)

ε1
+

1

3

)

log

(

n+ 1

t

)⌉}

(7.10)

and

|Hk| ≥ min

{

N,

⌈

4κψ,j(x)

ε2

(

2κψ,j(x)

ε2
+

1

3

)

log

(

2n

t

)⌉}

. (7.11)

The adaptive nature of these sample sizes is apparent in formulae (7.9)–(7.11), because they depend
on x and εj , which are themselves dynamically updated in the course of the ARpDA algorithm.
Depending on the size of N , it may clearly be necessary to consider the whole set {1, . . . , N} for
small values of {εj}

2
j=0. If the cost of evaluating functions ψi, for 1 ≤ i ≤ N , is comparable for all

i, the cost of evaluating fk(xk, ωk) amounts to the fraction |Dk,1|/N of the effort for computing
the exact value f(xk). Analogous considerations hold for the objective function’s derivatives.
In particular, whenever N is large enough to ensure that (7.9)–(7.11) do not require the full
sample, the size of the sample used to obtain a single approximate objective function value is
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O(ε−2
0 ). Analogously, gradient and Hessian values are approximated by averaging over samples

of size O(ε−2
1 ) and O(ε−2

2 ), respectively. In Step 3 of the AR1DA algorithm, the choice ε0 ∈
[

γǫωk‖∇
j
xf(xk)‖

2/σk, ωk‖∇
j
xf(xk)‖

2/σk
]

is required to ensure that (6.2)-(6.3) are satisfied. With

this choice, iteration k of the AR1DA algorithm requires O(‖∇j
xf(xk)‖

−4) ψi-evaluations (O(ǫ−4)

ψi-evaluations in the worst case). Similarly, ε0 = O(ωk‖∆T
f

2 (xk, sk, ωk)‖) is needed at iteration k
of the AR2DA algorithm. As a consequence, and if the algorithm does not terminate at iteration
k + 1, it follows from Lemma 4.1 and 4.4 that O(ǫ−(3/(3−q))2) ψi-evaluations may be required in
the worst case. Finally, using Lemma 3.5 and (3.29), we claim that each iteration of the AR1DA
and AR2DA algorithms requires at most O((1 + νmax(ǫ))ǫ

−2) evaluations of component gradients
and component Hessians, where νmax(ǫ) has been defined in (3.30). These bounds turn out to be
better or the same as those derived in [7], [14] or [31]. Although they may appear discouraging, it
should be kept in mind that they are valid only if N is truly large compared with 1/ǫ (for instance,
it has to exceed O(ǫ−4) to allow for approximate functions in the AR1DA Algorithm). In other
words, the sampling schemes (7.9)–(7.11) are most relevant when 1/ǫ remains modest compared
with N .

We emphasize that the per-iteration failure probability t given in (7.4) is not too demanding
in what concerns the sample size, because it only occurs in the logarithm term of (7.7). The same
is true of the impact of the value of the unknown constants hidden in the O(·) notation in (7.4).

The implementation of rules (7.9)-(7.11) requires the knowledge of the size of the functions ψi’s
and their first and second order derivatives. If only global information is available, the dependence
on x may obviously be avoided by choosing a uniform upper bound κψ,j for all x ∈ F , at the
cost of a lesser adaptivity. Similar bounds on the sample size used to approximate gradients and
Hessians up to a prescribed probability have been derived and used in [25] where it has also been
observed that there are problems where estimations of the needed uniform upper bounds can be
obtained. In particular, let {(ai, bi)}

N
i=1 denote the pairs forming a data set with ai ∈ IRn being

the vector containing the features of the i-th example and bi being its label. In [25] the authors

considered the minimization of objective function (1/N)
∑N
i=1(Φ(a

T
i x) − bia

T
i x) over a sparsity

inducing constraint set, e.g., F = {x ∈ IRn | ‖x‖1 ≤ 1}, for cumulant generating functions Φ
of different forms, and explicitly provided the uniform bound κψ,1. Taking into account that x
belongs to the set F , uniform bounds for the objective function and the Hessian norm can also be
derived.

Uniform bounds are available also in the unconstrained setting for binary classification prob-
lems modelled by the sigmoid function and least-squares loss, i.e. problems of the form (7.5) with
F ≡ IRn and

ψi(x) =

(

bi −
1

1 + e−a
T
i x

)2

, i = 1 . . . , N. (7.12)

Let vi(x) = (1 + e−a
T
i x)−1 and note that bi ∈ {0, 1} and vi(x) ∈ (0, 1) for any x ∈ IRn. Then,

|ψi(x)| ≤ 1, for any x ∈ IRn. Moreover, uniform upper bounds κψ,j for ∇j
xψi(x), j = 1, 2 can be

easily derived and they are reported in Table 7.1 along with the expression of the first and second
order derivatives of ψi(x). The computation of these bounds requires a pre-processing phase as
the norms of the features vectors {ai}

N
i=1 of the data sets are needed.

Derivatives κψ,j
∇xψi(x) −(bi − vi(x))(1− vi(x))vi(x)ai 1

5‖ai‖
∇2
xψi(x) vi(x)(1− vi(x))(3vi(x)

2 − 2vi(x)(1 + bi) + bi)aia
T
i

1
10‖ai‖

2

Table 7.1

First and second order derivatives of (7.12) and corresponding uniform bounds

8. Conclusion and perspectives. We have provided a general regularization algorithm
using inexact function and derivatives’ values, featuring a flexible adaptive mechanism for spec-
ifying the amount of inexactness acceptable at each iteration. This algorithm, inspired by the
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unifying framework proposed in [12], is applicable to unconstrained and inexpensively-constrained
nonconvex optimization problems, and provides optimal iteration complexity for arbitrary degree
of available derivatives, arbitrary order of optimality and the full range of smoothness assumptions
on the objective function highest derivative. We have also specialized this algorithm to the cases
of first- and second-order methods, exhibiting simple and numerically realistic methods. We have
finally provided a probabilistic version of the complexity analysis and derived associated lower
bounds on sample size in the context of subsampling methods.

There are of course many ways in which the proposed algorithm might be improved. For
instance, the central calculation of relatively accurate Taylor increments may possibly be made
more efficient by updating the absolute accuracies for different degrees separately. Further tech-
niques to avoid unnecessary derivative computations (without affecting the optimal complexity)
could also be investigated.

The framework proposed in this paper also offers obvious avenues for specializations to specific
contexts, among which we outline two. The first is that of algorithms using stochastic approx-
imations of function values and derivatives. The technique presented here derives probabilistic
conditions under which properties of the deterministic algorithms are preserved. It does not pro-
vide an algorithm which is robust against failures to satisfy the adaptive accuracy requirements.
This is in contrast with the interesting analysis of unconstrained first-order methods of [24] and
[7]. Combining the generality of our approach with the robustness of the proposal in these latter
papers is thus desirable. The second interesting avenue is the application of the new results to
multi-precision optimization in the context of very high performance computing. In this context,
it is of paramount importance to limit energy dissipation in the course of an accurate calculation,
and this may be obtained by varying the accuracy of the most crucially expensive of its parts
(see [19] for unconstrained quadratic optimization). The discussion above again provides guidance
at what level of arithmetic accuracy is needed to achieve overall performance while maintaining
optimal complexity. Both these topics are the object of ongoing research and will be reported on
at a later stage.
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