251 research outputs found

    Dynamics of 8CB confined into porous silicon probed by incoherent neutron backscattering experiments

    Full text link
    Confinement in the nanochannels of porous silicon strongly affects the phase behavior of the archetype liquid-crystal 4-n-octyl-4-cyanobiphenyl (8CB). A very striking phenom- enon is the development of a short-range smectic order, which occurs on a very broad temperature range. It suggests in this case that quenched disorder effects add to usual finite size and surface interaction effects. We have monitored the temperature variation of the molecular dynamics of the confined fluid by incoherent quasielastic neutron scat- tering. A strongly reduced mobility is observed at the highest temperatures in the liquid phase, which suggests that the interfacial molecular dynamics is strongly hindered. A continuously increasing slowdown appears on cooling together with a progressive growth of the static correlation lengt

    Rich polymorphism of a rod-like liquid crystal (8CB) confined in two types of unidirectional nanopores

    Get PDF
    We present a neutron and X-rays scattering study of the phase transitions of 4-n-octyl-4'-cyanobiphenyl (8CB) confined in unidirectional nanopores of porous alumina and porous silicon (PSi) membranes with an average diameter of 30 nm. Spatial confinement reveals a rich polymorphism, with at least four different low temperature phases in addition to the smectic A phase. The structural study as a function of thermal treatments and conditions of spatial confinement allows us to get insights into the formation of these phases and their relative stability. It gives the first description of the complete phase behavior of 8CB confined in PSi and provides a direct comparison with results obtained in bulk conditions and in similar geometric conditions of confinement but with reduced quenched disorder effects using alumina anopore membranesComment: Accepted in EPJ E - Soft Matte

    Evolution of the magnetic phase transition in MnO confined to channel type matrices. Neutron diffraction study

    Full text link
    Neutron diffraction studies of antiferromagnetic MnO confined to MCM-41 type matrices with channel diameters 24-87 A demonstrate a continuous magnetic phase transition in contrast to a discontinuous first order transition in the bulk. The character of the magnetic transition transforms with decreasing channel diameter, showing the decreasing critical exponent and transition temperature, however the latter turns out to be above the N\'eel temperature for the bulk. This enhancement is explained within the framework of Landau theory taking into consideration the ternary interaction of the magnetic and associated structural order parameters.Comment: 6 pages pdf file, including 4 figures, uses revtex4.cl

    ESR of MnO embedded in silica nanoporous matrices with different topologies

    Full text link
    Electron spin resonance (ESR) experiments were performed with antiferromagnetic MnO confined within a porous vycor-type glass and within MCM-type channel matrices. A signal from confined MnO shows two components from crystallized and amorphous MnO and depends on the pore topology. Crystallized MnO within a porous glass shows a behavior having many similarities to the bulk. In contrast with the bulk the strong ESR signal due to disordered "surface" spins is observed below the magnetic transition. With the decrease of channel diameter the fraction of amorphous MnO increases while the amount of crystallized MnO decreases. The mutual influence of amorphous and crystalline MnO is observed in the matrices with a larger channel diameter. In the matrices with a smaller channel diameter the ESR signal mainly originates from amorphous MnO and its behavior is typical for the highly disordered magnetic system.Comment: 7 pages pdf file, 5 figure

    Molecular dynamics of glycerol and glycerol-trehalose bioprotectant solutions nanoconfined in porous silicon

    Full text link
    Glycerol and trehalose-glycerol binary solutions are glass-forming liquids with remarkable bioprotectant properties. Incoherent quasielastic neutron scattering (QENS) is used to reveal the different effects of nanoconfinement and addition of trehalose on the molecular dynamics in the normal liquid and supercooled liquid phases, on a nanosecond timescale. Confinement has been realized in straight channels of diameter D=8 nm formed by porous silicon. It leads to a faster and more inhomogeneous relaxation dynamics deep in the liquid phase. This confinement effect remains at lower temperature where it affects the glassy dynamics. The glass transitions of the confined systems are shifted to low temperature with respect to the bulk ones. Adding trehalose tends to slow down the overall glassy dynamics and increases the non-exponential character of the structural relaxation. Unprecedented results are obtained for the binary bioprotectant solution, which exhibits an extremely non-Debye relaxation dynamics as a result of the combination of the effects of confinement and mixing of two constituents

    Continuous Paranematic-to-Nematic Ordering Transitions of Liquid Crystals in Tubular Silica Nanochannels

    Full text link
    The optical birefringence of rod-like nematogens (7CB, 8CB), imbibed in parallel silica channels with 10 nm diameter and 300 micrometer length, is measured and compared to the thermotropic bulk behavior. The orientational order of the confined liquid crystals, quantified by the uniaxial nematic ordering parameter, evolves continuously between paranematic and nematic states, in contrast to the discontinuous isotropic-to-nematic bulk phase transitions. A Landau-de Gennes model reveals that the strength of the orientational ordering fields, imposed by the silica walls, is beyond a critical threshold, that separates discontinuous from continuous paranematic-to-nematic behavior. Quenched disorder effects, attributable to wall irregularities, leave the transition temperatures affected only marginally, despite the strong ordering fields in the channels.Comment: 4 pages, 3 figures, Physical Review Letters (in press

    Molecular dynamics of a short range ordered smectic phase nanoconfined into porous silicon

    Get PDF
    4-n-octyl-4-cyanobiphenyl (8CB) has been recently shown to display an unusual sequence of phases when confined into porous silicon (PSi). The gradual increase of oriented short-range smectic (SRS) correlations in place of a phase transition has been interpreted as a consequence of the anisotropic quenched disorder induced by confinement in PSi. Combining two quasielastic neutron scattering experiments with complementary energy resolutions, we present the first investigation of the individual molecular dynamics of this system. A large reduction of the molecular dynamics is observed in the confined liquid phase, as a direct consequence of the dynamical boundary conditions imposed by the confinement. Temperature fixed window scans (FWS) reveal a continuous 'glass-like' reduction of the molecular dynamics of the confined liquid and SRS phases on cooling down to 250 K, where a solid-like behavior is finally reached by a two steps crystallization process

    On the correlation between fragility and stretching in glassforming liquids

    Full text link
    We study the pressure and temperature dependences of the dielectric relaxation of two molecular glassforming liquids, dibutyl phtalate and m-toluidine. We focus on two characteristics of the slowing down of relaxation, the fragility associated with the temperature dependence and the stretching characterizing the relaxation function. We combine our data with data from the literature to revisit the proposed correlation between these two quantities. We do this in light of constraints that we suggest to put on the search for empirical correlations among properties of glassformers. In particular, argue that a meaningful correlation is to be looked for between stretching and isochoric fragility, as both seem to be constant under isochronic conditions and thereby reflect the intrinsic effect of temperature

    Neutron scattering and molecular correlations in a supercooled liquid

    Full text link
    We show that the intermediate scattering function Sn(q,t)S_n(q,t) for neutron scattering (ns) can be expanded naturely with respect to a set of molecular correlation functions that give a complete description of the translational and orientational two-point correlations in the liquid. The general properties of this expansion are discussed with special focus on the qq-dependence and hints for a (partial) determination of the molecular correlation functions from neutron scattering results are given. The resulting representation of the static structure factor Sn(q)S_n(q) is studied in detail for a model system using data from a molecular dynamics simulation of a supercooled liquid of rigid diatomic molecules. The comparison between the exact result for Sn(q)S_n(q) and different approximations that result from a truncation of the series representation demonstrates its good convergence for the given model system. On the other hand it shows explicitly that the coupling between translational (TDOF) and orientational degrees of freedom (ODOF) of each molecule and rotational motion of different molecules can not be neglected in the supercooled regime.Further we report the existence of a prepeak in the ns-static structure factor of the examined fragile glassformer, demonstrating that prepeaks can occur even in the most simple molecular liquids. Besides examining the dependence of the prepeak on the scattering length and the temperature we use the expansion of Sn(q)S_n(q) into molecular correlation functions to point out intermediate range orientational order as its principle origin.Comment: 13 pages, 7 figure
    • …
    corecore