6,815 research outputs found

    From solar-like to anti-solar differential rotation in cool stars

    Full text link
    Stellar differential rotation can be separated into two main regimes: solar-like when the equator rotates faster than the poles and anti-solar when the polar regions rotate faster than the equator. We investigate the transition between these two regimes with 3-D numerical simulations of rotating spherical shells. We conduct a systematic parameter study which also includes models from different research groups. We find that the direction of the differential rotation is governed by the contribution of the Coriolis force in the force balance, independently of the model setup (presence of a magnetic field, thickness of the convective layer, density stratification). Rapidly-rotating cases with a small Rossby number yield solar-like differential rotation, while weakly-rotating models sustain anti-solar differential rotation. Close to the transition, the two kinds of differential rotation are two possible bistable states. This study provides theoretical support for the existence of anti-solar differential rotation in cool stars with large Rossby numbers.Comment: 5 pages, 6 figures, accepted for publication in MNRA

    Cool Stars and Space Weather

    Full text link
    Stellar flares, winds and coronal mass ejections form the space weather. They are signatures of the magnetic activity of cool stars and, since activity varies with age, mass and rotation, the space weather that extra-solar planets experience can be very different from the one encountered by the solar system planets. How do stellar activity and magnetism influence the space weather of exoplanets orbiting main-sequence stars? How do the environments surrounding exoplanets differ from those around the planets in our own solar system? How can the detailed knowledge acquired by the solar system community be applied in exoplanetary systems? How does space weather affect habitability? These were questions that were addressed in the splinter session "Cool stars and Space Weather", that took place on 9 Jun 2014, during the Cool Stars 18 meeting. In this paper, we present a summary of the contributions made to this session.Comment: Proceedings of the 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, Eds G. van Belle & H. Harris, 13 pages, 1 figur

    Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists.

    Get PDF
    To elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a 'symbiosis toolkit', with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes

    High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared

    Full text link
    We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous WSi and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric down-conversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of 0.6×1040.6\times10^4 photons/(s\cdotmW\cdotMHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering

    Determination of the Antiferroquadrupolar Order Parameters in UPd3

    Get PDF
    By combining accurate heat capacity and X-ray resonant scattering results we have resolved the long standing question regarding the nature of the quadrupolar ordered phases in UPd_3. The order parameter of the highest temperature quadrupolar phase has been uniquely determined to be antiphase Q_{zx} in contrast to the previous conjecture of Q_{x^2-y^2} . The azimuthal dependence of the X-ray scattering intensity from the quadrupolar superlattice reflections indicates that the lower temperature phases are described by a superposition of order parameters. The heat capacity features associated with each of the phase transitions characterize their order, which imposes restrictions on the matrix elements of the quadrupolar operators.Comment: 4 pages, 5 figure

    Quadrupolar Order in Isotropic Heisenberg Models with Biquadratic Interaction

    Get PDF
    Through Quantum Monte Carlo simulation, we study the biquadratic-interaction model with the SU(2) symmetry in two and three dimensions. The zero-temperature phase diagrams for the two cases are identical and exhibit an intermediate phase characterized by finite quadrupole moment, in agreement with mean-field type arguments and the semi-classical theory. In three dimensions, we demonstrate that the model in the quadrupolar regime has a phase transition at a finite temperature. In contrast to predictions by mean-field theories, the phase transition to the quadrupolar phase turns out to be of the second order. We also examine the critical behavior in the two marginal cases with the SU(3) symmetry.Comment: 4 pages 5 figure

    Magnetic Field Effects on Neutron Diffraction in the Antiferromagnetic Phase of UPt3UPt_3

    Get PDF
    We discuss possible magnetic structures in UPt3_3 based on our analysis of elastic neutron-scattering experiments in high magnetic fields at temperatures T<TNT<T_N. The existing experimental data can be explained by a single-{\bf q} antiferromagnetic structure with three independent domains. For modest in-plane spin-orbit interactions, the Zeeman coupling between the antiferromagnetic order parameter and the magnetic field induces a rotation of the magnetic moments, but not an adjustment of the propagation vector of the magnetic order. A triple-{\bf q} magnetic structure is also consistent with neutron experiments, but in general leads to a non-uniform magnetization in the crystal. New experiments could decide between these structures.Comment: 5 figures included in the tex

    Probing a ferromagnetic critical regime using nonlinear susceptibility

    Full text link
    The second order para-ferromagnetic phase transition in a series of amorphous alloys (Fe{_5}Co{_{50}}Ni{_{17-x}}Cr{_x}B{_{16}}Si{_{12}}) is investigated using nonlinear susceptibility. A simple molecular field treatment for the critical region shows that the third order suceptibility (chi{_3}) diverges on both sides of the transition temperature, and changes sign at T{_C}. This critical behaviour is observed experimentally in this series of amorphous ferromagnets, and the related assymptotic critical exponents are calculated. It is shown that using the proper scaling equations, all the exponents necessary for a complete characterization of the phase transition can be determined using linear and nonlinear susceptiblity measurements alone. Using meticulous nonlinear susceptibility measurements, it is shown that at times chi{_3} can be more sensitive than the linear susceptibility (chi{_1}) in unravelling the magnetism of ferromagnetic spin systems. A new technique for accurately determining T{_C} is discussed, which makes use of the functional form of chi{_3} in the critical region.Comment: 11 Figures, Submitted to Physical Review

    Experimental demonstration of spectral sideband splitting in strongly dispersion oscillating fibers

    Get PDF
    By using a highly nonlinear, dispersion oscillating optical fiber operating in the telecom C band, we experimentally demonstrate the splitting experienced by quasi-phase matched gain sidebands in the strongly dispersion managed regime of a dispersion oscillating fiber as the power of a continuous-wave pump laser is increased over a certain threshold value. Very good agreement is found between the theoretical predictions and our experimental measurements
    corecore