1,726 research outputs found

    The conformal mapping of the interior of the unit circle onto the interior of a class of smooth curves

    Get PDF
    Outer and inner curved plates and shell shapes optimized by conformal mappin

    The Enigmatic Radio Afterglow of GRB 991216

    Full text link
    We present wide-band radio observations spanning from 1.4 GHz to 350 GHz of the afterglow of GRB 991216, taken from 1 to 80 days after the burst. The optical and X-ray afterglow of this burst were fairly typical and are explained by a jet fireball. In contrast, the radio light curve is unusual in two respects: (a) the radio light curve does not show the usual rise to maximum flux on timescales of weeks and instead appears to be declining already on day 1 and (b) the power law indices show significant steepening from the radio through the X-ray bands. We show that the standard fireball model, in which the afterglow is from a forward shock, is unable to account for (b) and we conclude that the bulk of the radio emission must arise from a different source. We consider two models, neither of which can be ruled out with the existing data. In the first (conventional) model, the early radio emission is attributed to emission from the reverse shock as in the case of GRB 990123. We predict that the prompt optical emission would have been as bright (or brighter) than 8th magnitude. In the second (exotic) model, the radio emission originates from the forward shock of an isotropically energetic fireball (10^54 erg) expanding into a tenuous medium (10^-4 cm^-3). The resulting fireball would remain relativistic for months and is potentially resolvable with VLBI techniques. Finally, we note that the near-IR bump of the afterglow is similar to that seen in GRB 971214 and no fireball model can explain this bump.Comment: ApJ, submitte

    Editorial - Infectious-disease research during a pandemic:the importance of global unity

    Get PDF
    The orthopaedic and trauma community have faced the threat of infection since the introduction of operative fracture fixation many decades ago. The parallel emergence and spread of antimicrobial resistance in clinically relevant pathogens has the potential to significantly complicate patient care. This editorial serves to provide a global context to the issue of antimicrobial resistance and how infectious disease research in general plays a crucial role both on a global scale as evidenced by the current pandemic, but also on a more personal scale for the daily management of orthopaedic trauma patients. The special issue on Orthopaedic Infection in the eCM journal provides a snapshot of the clinically relevant basic research that is being performed in this field

    First observation of CO at 345 GHz in the atmosphere of Saturn with the JCMT. New constaints on its origin

    Get PDF
    International audienceWe have performed the first observation of the CO(3-2) spectral line in the atmosphere of Saturn with the James Clerk Maxwell Telescope. We have used a transport model of the atmosphere of Saturn to constrain the origin of the observed CO. The CO line is best-fit when the CO is located at pressures less than (15± 2) mbar with a mixing ratio of (2.5±0.6)×10-8 implying an external origin. By modelling the transport in Saturn's atmosphere, we find that a cometary impact origin with an impact 200-350 years ago is more likely than continuous deposition by interplanetary dust particles (IDP) or local sources (rings/satellites). This result would confirm that comet impacts are relatively frequent and efficient providers of CO to the atmospheres of the outer planets. However, a diffuse and/or local source cannot be rejected, because we did not account for photochemistry of oxygen compounds. Finally, we have derived an upper limit of 1×10-9 on the tropospheric CO mixing ratio

    HI ``Tails'' from Cometary Globules in IC1396

    Get PDF
    IC 1396 is a relatively nearby (750 pc), large (>2 deg), HII region ionized by a single O6.5V star and containing bright-rimmed cometary globules. We have made the first arcmin resolution images of atomic hydrogen toward IC 1396, and have found remarkable ``tail''-like structures associated with some of the globules and extending up to 6.5 pc radially away from the central ionizing star. These HI ``tails'' may be material which has been ablated from the globule through ionization and/or photodissociation and then accelerated away from the globule by the stellar wind, but which has since drifted into the ``shadow'' of the globules. This report presents the first results of the Galactic Plane Survey Project recently begun by the Dominion Radio Astrophysical Observatory.Comment: 11 pages, 5 postscript figures, uses aaspp4.sty macros, submitted in uuencoded gzipped tar format, accepted for publication in Astrophysical Journal Letters, colour figures available at http://www.drao.nrc.ca/~schieven/news_sep95/ic1396.htm

    Etiology of pure tricuspid regurgitation based on anular circumference and leaflet area: Analysis of 45 necropsy patients with clinical and morphologic evidence of pure tricuspid regurgitation

    Get PDF
    Despite recent renewed interest in the detection of tricuspid valve regurgitation by echocardiographic and Doppler techniques, little morphologic information is available on dysfunctioning tricuspid valves. This report describes 45 necropsy patients with clinical and morphologic evidence of pure(no element of stenosis) tricuspid regurgitation and provides morphometric observations (anular circumference, leaflet area) of the tricuspid valve useful in determining the etiology of pure tricuspid regurgitation. Of 45 patients, 24 (53%) had pure tricuspid regurgitation resulting from an anatomically abnormal valve (prolap9e in 7, papillary muscle dysfunction in 6, rheumatic disease in 5, Ebstein's anomaly in 3, infective endocarditis in 2, carcinoid tumor in 1), and 21(47%) had an anatomically normal valve with systolic pulmonary artery hypertension (cor pulmonary in 12, mitral stenosis in 9). Anular circumference was dilated (> 12 cm) in patients with various causes of pulmonary hypertension, floppy valve and Ebstein's tricuspid anomaly. Leaflet area was increased in floppy valve and Ebstein's anomaly.Of the 45 patients, 24 had pulmonary systolic artery pressure measurements available for correlation with tricuspid valve morphology. Pulmonary artery pressures accurately predicted morphologically normal from abnormal valves in 16 patients (89 %). Morphologic overlap occurred in six patients with pulmonary pressures of 41 to 54 mm Hg. Of these six, the additional knowledge of normal or dilated anular circumference correctly separated valves with normal and abnormal leaflets

    Infections associated with mesh repairs of abdominal wall hernias : Are antimicrobial biomaterials the longed-for solution?

    Get PDF
    The incidence of mesh-related infection after abdominal wall hernia repair is low, generally between 1 and 4%; however, worldwide, this corresponds to tens of thousands of difficult cases to treat annually. Adopting best practices in prevention is one of the keys to reduce the incidence of mesh-related infection. Once the infection is established, however, only a limited number of options are available that provides an efficient and successful treatment outcome. Over the past few years, there has been a tremendous amount of research dedicated to the functionalization of prosthetic meshes with antimicrobial properties, with some receiving regulatory approval and are currently available for clinical use. In this context, it is important to review the clinical importance of mesh infection, its risk factors, prophylaxis and pathogenicity. In addition, we give an overview of the main functionalization approaches that have been applied on meshes to confer anti-bacterial protection, the respective benefits and limitations, and finally some relevant future directions. (C) 2018 Elsevier Ltd. All rights reserved.Peer reviewe

    The Broadband Afterglow of GRB980329

    Get PDF
    We present radio observations of the afterglow of the bright gamma-ray burst GRB980329 made between one month and several years after the burst, a re-analysis of previously published submillimeter data, and late-time optical and near-infrared (NIR) observations of the host galaxy. From the absence of a spectral break in the optical/NIR colors of the host galaxy, we exclude the earlier suggestion that GRB980329 lies at a redshift of z >~5. We combine our data with the numerous multi-wavelength observations of the early afterglow, fit a comprehensive afterglow model to the entire broadband dataset, and derive fundamental physical parameters of the blast-wave and its host environment. Models for which the ejecta expand isotropically require both a high circumburst density and extreme radiative losses from the shock. No low density model (n << 10 cm^{-3}) fits the data. A burst with a total energy of ~ 10^{51} erg, with the ejecta narrowly collimated to an opening angle of a few degrees, driven into a surrounding medium with density ~ 20 cm^{-3}, provides a satisfactory fit to the lightcurves over a range of redshifts.Comment: 27 pages, incl. 6 figures, minor revisions (e.g. added/updated references) Accepted by Ap

    Star Formation in Massive Protoclusters in the Monoceros OB1 Dark Cloud

    Full text link
    We present far-infrared, submillimetre, and millimetre observations of bright IRAS sources and outflows that are associated with massive CS clumps in the Monoceros OB1 Dark Cloud. Individual star-forming cores are identified within each clump. We show that combining submillimetre maps, obtained with SCUBA on the JCMT, with HIRES-processed and modelled IRAS data is a powerful technique that can be used to place better limits on individual source contributions to the far-infrared flux in clustered regions. Three previously categorized "Class I objects" are shown to consist of multiple sources in different evolutionary stages. In each case, the IRAS point source dominates the flux at 12 and 25 microns. In two cases, the IRAS point source is not evident at submillimetre wavelengths. The submillimetre sources contribute significantly to the 60 and 100 micron fluxes, dominating the flux in the 100 micron waveband. Using fluxes derived from our technique, we present the spectral energy distribution and physical parameters for an intermediate-mass Class 0 object in one of the regions. Our new CO J=2-1 outflow maps of the three regions studied indicate complex morphology suggestive of multiple driving sources. We discuss the possible implications of our results for published correlations between outflow momentum deposition rates and "source" luminosities, and for using these derived properties to estimate the ratio of mass ejection rates to mass accretion rates onto protostars.Comment: 12 pages, 11 gzipped gif figures, LaTex file and MNRAS style files, accepted by MNRAS, v2: reference typos and author affiliation have been correcte

    Vortex Dynamics in Self-Dual Chern-Simons Higgs Systems

    Full text link
    We consider vortex dynamics in self-dual Chern-Simons Higgs systems. We show that the naive Aharanov-Bohm phase is the inverse of the statistical phase expected from the vortex spin, and that the self-dual configurations of vortices are degenerate in energy but not in angular momentum. We also use the path integral formalism to derive the dual formulation of Chern-Simons Higgs systems in which vortices appear as charged particles. We argue that besides the electromagnetic interaction, there is an additional interaction between vortices, the so-called Magnus force, and that these forces can be put together into a single `dual electromagnetic' interaction. This dual electromagnetic interaction leads to the right Aharanov-Bohm phase. We also derive and study the effective action for slowly moving vortices, which contains terms both linear and quadratic in the vortex velocity.Comment: 36 pages and three figures (available under request), Columbia and CERN preprin
    corecore