199 research outputs found

    EVALUATION OF GRAIN YIELD STABILITY, RELIABILITY AND CULTIVAR RECOMMENDATIONS IN SPRING WHEAT (TRITICUM AESTIVUM L.) FROM KAZAKHSTAN AND SIBERIA

    Get PDF
    The investigation was carried out to determine the stability and adaptability patterns of a set of 40 promising spring wheat genotypes from Kazakhstan and Siberia evaluated in a multievironment yield trial across 22 environments. Some of the most widely known parametric stability parameters were used as well as the less frequently cited reliability index (I). Grain yield correlated significantly and positively with the stability parameters b and S2 and the reliability index (I); but did not correlate with AMMI ASV. However, the stability parameters failed in detecting adaptability patterns. In contrast, the reliability index (I) was probed to be more useful in supporting practical decisions. With regard to the genotypes, cultivars Lutescens 54, Lutescens 30-94, Lutescens 29-94, Tertsia, Omskaya 35, and Shortandynskaya 95 showed to be the widest adapted and the most reliable cultivars

    EVALUATION OF GRAIN YIELD STABILITY, RELIABILITY AND CULTIVAR RECOMMENDATIONS IN SPRING WHEAT (TRITICUM AESTIVUM L.) FROM KAZAKHSTAN AND SIBERIA

    Get PDF
    The investigation was carried out to determine the stability and adaptability patterns of a set of 40 promising spring wheat genotypes from Kazakhstan and Siberia evaluated in a multievironment yield trial across 22 environments. Some of the most widely known parametric stability parameters were used as well as the less frequently cited reliability index (I). Grain yield correlated significantly and positively with the stability parameters b and S2 and the reliability index (I); but did not correlate with AMMI ASV. However, the stability parameters failed in detecting adaptability patterns. In contrast, the reliability index (I) was probed to be more useful in supporting practical decisions. With regard to the genotypes, cultivars Lutescens 54, Lutescens 30-94, Lutescens 29-94, Tertsia, Omskaya 35, and Shortandynskaya 95 showed to be the widest adapted and the most reliable cultivars

    Genome-Wide Association Study Reveals Novel Genomic Regions for Grain Yield and Yield-Related Traits in Drought-Stressed Synthetic Hexaploid Wheat

    Get PDF
    Synthetic hexaploid wheat (SHW; 2n = 6x = 42, AABBDD, Triticum aestivum L.) is produced from an interspecific cross between durum wheat (2n = 4x = 28, AABB, T. turgidum L.) and goat grass (2n = 2x = 14, DD, Aegilops tauschii Coss.) and is reported to have significant novel alleles-controlling biotic and abiotic stresses resistance. A genome-wide association study (GWAS) was conducted to unravel these loci [marker–trait associations (MTAs)] using 35,648 genotyping-by-sequencing-derived single nucleotide polymorphisms in 123 SHWs. We identified 90 novel MTAs (45, 11, and 34 on the A, B, and D genomes, respectively) and haplotype blocks associated with grain yield and yield-related traits including root traits under drought stress. The phenotypic variance explained by the MTAs ranged from 1.1% to 32.3%. Most of the MTAs (120 out of 194) identified were found in genes, and of these 45 MTAs were in genes annotated as having a potential role in drought stress. This result provides further evidence for the reliability of MTAs identified. The large number of MTAs (53) identified especially on the D-genome demonstrate the potential of SHWs for elucidating the genetic architecture of complex traits and provide an opportunity for further improvement of wheat under rapidly changing climatic conditions

    Iron and zinc grain density in common wheat grown in Central Asia

    Get PDF
    Sixty-six spring and winter common wheat genotypes from Central Asian breeding programs were evaluated for grain concentrations of iron (Fe) and zinc (Zn). Iron showed large variation among genotypes, ranging from 25 mg kg1 to 56 mg kg1 (mean 38 mg kg1). Similarly, Zn concentration varied among genotypes, ranging between 20 mg kg1 and 39 mg kg1 (mean 28 mg kg1). Spring wheat cultivars possessed higher Fe-grain concentrations than winter wheats. By contrast, winter wheats showed higher Zn-grain concentrations than spring genotypes. Within spring wheat, a strongly significant positive correlation was found between Fe and Zn. Grain protein content was also significantly (P < 0.001) correlated with grain Zn and Fe content. There were strong significantly negative correlations between Fe and plant height, and Fe and glutenin content. Similar correlation coefficients were found for Zn. In winter wheat, significant positive correlations were found between Fe and Zn, and between Zn and sulfur (S). Manganese (Mn) and phosphorus (P) were negatively correlated with both Fe and Zn. The additive main effects and multiplicative interactions (AMMI) analysis of genotype × environment interactions for grain Fe and Zn concentrations showed that genotype effects largely controlled Fe concentration, whereas Zn concentration was almost totally dependent on location effects. Spring wheat genotypes Lutescens 574, and Eritrospermum 78; and winter wheat genotypes Navruz, NA160/HEINEVII/BUC/3/F59.71//GHK, Tacika, DUCULA//VEE/MYNA, and JUP/4/CLLF/3/II14.53/ODIN//CI13431/WA00477, are promising materials for increasing Fe and Zn concentrations in the grain, as well as enhancing the concentration of promoters of Zn bioavailability, such as S-containing amino acids

    Unlocking the novel genetic diversity and population structure of synthetic Hexaploid wheat

    Get PDF
    Background: Synthetic hexaploid wheat (SHW) is a reconstitution of hexaploid wheat from its progenitors (Triticum turgidum ssp. durum L.; AABB x Aegilops tauschii Coss.; DD) and has novel sources of genetic diversity for broadening the genetic base of elite bread wheat (BW) germplasm (T. aestivum L). Understanding the diversity and population structure of SHWs will facilitate their use in wheat breeding programs. Our objectives were to understand the genetic diversity and population structure of SHWs and compare the genetic diversity of SHWs with elite BW cultivars and demonstrate the potential of SHWs to broaden the genetic base of modern wheat germplasm. Results: The genotyping-by-sequencing of SHW provided 35,939 high-quality single nucleotide polymorphisms (SNPs) that were distributed across the A (33%), B (36%), and D (31%) genomes. The percentage of SNPs on the D genome was nearly same as the other two genomes, unlike in BW cultivars where the D genome polymorphism is generally much lower than the A and B genomes. This indicates the presence of high variation in the D genome in the SHWs. The D genome gene diversity of SHWs was 88.2% higher than that found in a sample of elite BW cultivars. Population structure analysis revealed that SHWs could be separated into two subgroups, mainly differentiated by geographical location of durum parents and growth habit of the crop (spring and winter type). Further population structure analysis of durum and Ae. parents separately identified two subgroups, mainly based on type of parents used. Although Ae. tauschii parents were divided into two sub-species: Ae. tauschii ssp. tauschii and ssp. strangulate, they were not clearly distinguished in the diversity analysis outcome. Population differentiation between SHWs (Spring_SHW and Winter_SHW) samples using analysis of molecular variance indicated 17.43% of genetic variance between populations and the remainder within populations. Conclusions: SHWs were diverse and had a clearly distinguished population structure identified through GBS-derived SNPs. The results of this study will provide valuable information for wheat genetic improvement through inclusion of novel genetic variation and is a prerequisite for association mapping and genomic selection to unravel economically important marker-trait associations and for cultivar development

    Identification of Leaf Rust Resistance Genes in Wheat Cultivars Produced in Kazakhstan

    Get PDF
    Leaf rust, caused by Puccinia recondita f. sp. tritici, is one of the major diseases of wheat in Kazakhstan. To effectively use leaf rust resistance genes (Lr), it is important for breeders to know the resistance genotype in current cultivars. In this study, 30 winter wheat entries grown and/or produced in Kazakhstan were investigated using molecular markers to determine the presence and absence of eight important Lr genes. Molecular screening of these genotypes showed contrasting differences in the frequencies of these genes. Among the 30 entries, 17 carried leaf rust resistance gene Lr1, six had Lr26 and Lr34, and Lr10 and Lr37 were found in three cultivars. Two single cultivars separately carried Lr19 and Lr68, while Lr9 was not detected in any genotypes in this study. Field evaluation demonstrated that two of the most frequent two genes (Lr1 and Lr26) to be ineffective. While Lr34 provided some protection, the remaining effective Lr genes were found only in few genotypes: Lr37 occurred in Kazakh genotypes L-1090 and Krasnovodapadskaya 210 and in the US cultivar Madsen; Lr19 and Lr68 were likely present only in Russian and Kazakh cultivars, Pallada and Yegemen, respectively. The highest resistance over three years of leaf rust testing was found in Kazakh cultivars, Karasay, Krasnovodapadskaya 210, L-1090, Arap and Yegmen, foreign cultivars Madsen, Pallada and the control Parula (Lr68). Data may assist breeders to incorporate effective Lr genes into new cultivars

    Genome-Wide Association Study Reveals Novel Genomic Regions Associated with 10 Grain Minerals in Synthetic Hexaploid Wheat

    Get PDF
    Synthetic hexaploid wheat (SHW; Triticum durum L. x Aegilops tauschii Coss.) is a means of introducing novel genes/genomic regions into bread wheat (T. aestivum L.) and a potential genetic resource for improving grain mineral concentrations. We quantified 10 grain minerals (Ca, Cd, Cu, Co, Fe, Li, Mg, Mn, Ni, and Zn) using an inductively coupled mass spectrometer in 123 SHWs for a genome-wide association study (GWAS). A GWAS with 35,648 single nucleotide polymorphism (SNP) markers identified 92 marker-trait associations (MTAs), of which 60 were novel and 40 were within genes, and the genes underlying 20 MTAs had annotations suggesting a potential role in grain mineral concentration. Twenty-four MTAs on the D-genome were novel and showed the potential of Ae. tauschii for improving grain mineral concentrations such as Ca, Co, Cu, Li, Mg, Mn, and Ni. Interestingly, the large number of novel MTAs (36) identified on the AB genome of these SHWs indicated that there is a lot of variation yet to be explored and to be used in the A and B genome along with the D-genome. Regression analysis identified a positive correlation between a cumulative number of favorable alleles at MTA loci in a genotype and grain mineral concentration. Additionally, we identified multi-traits and stable MTAs and recommended 13 top 10% SHWs with a higher concentration of beneficial grain minerals (Cu, Fe, Mg, Mn, Ni, and Zn), a large number of favorable alleles compared to low ranking genotypes and checks that could be utilized in the breeding program for the genetic biofortification. This study will further enhance our understanding of the genetic architecture of grain minerals in wheat and related cereals

    Сутність і зміст правовиховної роботи в органах внутрішніх справ

    Get PDF
    Моргунов О. А. Сутність і зміст правовиховної роботи в органах внутрішніх справ / О. А. Моргунов // Актуальні проблеми держави і права : зб. наук. пр. / редкол.: С. В. Ківалов (голов. ред.), В. М. Дрьомін (заст. голов. ред.) Ю. П. Аленін [та ін.] ; МОН України; НУ ОЮА. – Одеса : Юрид. л-ра, 2014. – Вип. 73. – С. 491-497.З метою уточнення сутності та змісту правовиховної роботи в органах внутрішніх справ у статті з’ясовується соціальний зміст виховання. Правове виховання характеризується як процес формування правової свідомості особистості, встановлюється результат правового виховання працівників органів внутрішніх справ. Правове виховання працівників органів внутрішніх справ розглядається в ши- рокому й вузькому розумінні. Визначаються мета, цілі, завдання та зміст виховної роботи працівників органів внутрішніх справ, встановлюються її основні закономірності

    Yield and Quality in Purple-Grained Wheat Isogenic Lines

    Get PDF
    Breeding programs for purple wheat are underway in many countries but there is a lack of information on the effects of Pp (purple pericarp) genes on agronomic and quality traits in variable environments and along the product chain (grain-flour-bread). This study was based on unique material: two pairs of isogenic lines in a spring wheat cv. Saratovskaya-29 (S29) background differing only in Pp genes and grain color. In 2017, seven experiments were conducted in Kazakhstan, Russia, and Turkey with a focus on genotype and environment interaction and, in 2018, one experiment in Turkey with a focus on grain, flour, and bread quality. The eect of environment was greater compared to genotype for the productivity and quality traits studied. Nevertheless, several important traits, such as grain color and anthocyanin content, are closely controlled by genotype, offering the opportunity for selection. Phenolic content in purple-grained lines was not significantly higher in whole wheat flour than in red-colored lines. However, this trait was significantly higher in bread. For antioxidant activities, no differences between the genotypes were detected in both experiments. Comparison of two sources of Pp genes demonstrated that the lines originating from cv. Purple Feed had substantially improved productivity and quality traits compared to those from cv. Purple

    Root and canopy traits and adaptability genes explain drought tolerance responses in winter wheat

    Get PDF
    Bread wheat (Triticum aestivum L) is one of the three main staple crops worldwide contributing 20% calories in the human diet. Drought stress is the main factor limiting yields and threatening food security, with climate change resulting in more frequent and intense drought. Developing drought-tolerant wheat cultivars is a promising way forward. The use of holistic approaches that include high-throughput phenotyping and genetic markers in selection could help in accelerating genetic gains. Fifty advanced breeding lines were selected from the CIMMYT Turkey winter wheat breeding program and studied under irrigated and semiarid conditions in two years. High-throughput phenotyping was done for wheat crown root traits and canopy senescence dynamics using vegetation indices (green area using RGB images and Normalized Difference Vegetation Index using spectral reflectance). In addition, genotyping by KASP markers for adaptability genes was done. Overall, under semiarid conditions yield reduced by 3.09 t ha-1 (-46.8%) compared to irrigated conditions. Genotypes responded differently under drought stress and genotypes 39 (VORONA/HD24- 12//GUN/7/VEE#8//. . ./8/ALTAY), 18 (BiII98) and 29 (NIKIFOR//KROSHKA) were the most drought tolerant. Root traits including shallow nodal root angle under irrigated conditions and root number per shoot under semiarid conditions were correlated with increased grain yield. RGB based vegetation index measuring canopy green area at anthesis was better correlated with GY than NDVI was with GY under drought. The markers for five established functional genes (PRR73.A1 -flowering time, TEF-7A -grain size and weight, TaCwi.4A - yield under drought, Dreb1- drought tolerance, and ISBW11.GY.QTL.CANDIDATE- grain yield) were associated with different drought-tolerance traits in this experiment. We conclude that-genotypes 39, 18 and 29 could be used for drought tolerance breeding. The trait combinations of canopy green area at anthesis, and root number per shoot along with key drought adaptability makers (TaCwi.4A and Dreb1) could be used in screening drought tolerance wheat breeding lines
    corecore