462 research outputs found

    Low T3 Syndrome in Head-Injured Patients is Associated with Prolonged Suppression of Markers of Cell-Mediated Immune Response

    Get PDF
    Purpose:: To clarify the association between disturbed thyroid hormone metabolism (low T3 syndrome) and release of cytokines and markers of cell-mediated immune response. Material and Methods:: Concentrations of cytokines as well as of thyroid hormones were determined in 32 patients suffering from severe traumatic brain injury: interleukin-( IL-)1, IL-6, IL-10, tumor necrosis factor, transforming growth factor-(TGF-)β, soluble interleukin-2 receptor (sIL-2R), neopterin, and β2-microglobulin (β2m) in serum and cerebrospinal fluid; triiodothyronine (T3), free T3, thyroxine (T4), free T4, thyrotropin, thyroxine-binding globulin, and albumin in serum. Additionally, clinical parameters were assessed: Glasgow Coma Score, CT scan, intracranial pressure, Glasgow Outcome Score, and occurrence of pneumonia. Results:: Among 31 patients with a low T3 syndrome, those with additional low serum T4 levels (n = 13) showed a prolonged suppression of serum β2m, neopterin, and sIL-2R, and a higher secondary increase of serum β2m, neopterin, and TGF-β, as well as lower T3 levels (all p < 0.05). These patients also had a longer stay in the intensive care unit (34 ± 6 days vs. 22 ± 12 days; p = 0.008). Increased levels of β2m correlated with a preceding decrease of thyrotropin (cerebrospinal fluid: r = -0.53; p = 0.004; serum: r = -0.41; p = 0.029). Associations of thyroid hormone metabolism with either other cytokines or with clinical parameters were not detected. Conclusion:: These results show that low T3 syndrome is a very common pathophysiological feature after severe traumatic brain injury. The association of a low T3 syndrome in combination with low serum T4 levels, with an altered time course of markers of cell-mediated immunity led the authors to hypothesize that a disturbed thyroid hormone metabolism may be interrelated with a prolonged cellular immune dysfunction after traumatic brain injur

    CCL2 modulates cytokine production in cultured mouse astrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chemokine CCL2 (also known as monocyte chemoattractant protein-1, or MCP-1) is upregulated in patients and rodent models of traumatic brain injury (TBI), contributing to post-traumatic neuroinflammation and degeneration by directing the infiltration of blood-derived macrophages into the injured brain. Our laboratory has previously reported that <it>Ccl2</it>-/- mice show reduced macrophage accumulation and tissue damage, corresponding to improved motor recovery, following experimental TBI. Surprisingly, <it>Ccl2</it>-deficient mice also exhibited delayed but exacerbated secretion of key proinflammatory cytokines in the injured cortex. Thus we sought to further characterise CCL2's potential ability to modulate immunoactivation of astrocytes <it>in vitro</it>.</p> <p>Methods</p> <p>Primary astrocytes were isolated from neonatal wild-type and <it>Ccl2</it>-deficient mice. Established astrocyte cultures were stimulated with various concentrations of lipopolysaccharide (LPS) and interleukin (IL)-1β for up to 24 hours. Separate experiments involved pre-incubation with mouse recombinant (r)CCL2 prior to IL-1β stimulation in wild-type cells. Following stimulation, cytokine secretion was measured in culture supernatant by immunoassays, whilst cytokine gene expression was quantified by real-time reverse transcriptase polymerase chain reaction.</p> <p>Results</p> <p>LPS (0.1-100 μg/ml; 8 h) induced the significantly greater secretion of five key cytokines and chemokines in <it>Ccl2</it>-/- astrocytes compared to wild-type cells. Consistently, IL-6 mRNA levels were 2-fold higher in <it>Ccl2</it>-deficient cells. IL-1β (10 and 50 ng/ml; 2-24 h) also resulted in exacerbated IL-6 production from <it>Ccl2</it>-/- cultures. Despite this, treatment of wild-type cultures with rCCL2 alone (50-500 ng/ml) did not induce cytokine/chemokine production by astrocytes. However, pre-incubation of wild-type astrocytes with rCCL2 (250 ng/ml, 12 h) prior to stimulation with IL-1β (10 ng/ml, 8 h) significantly reduced IL-6 protein and gene expression.</p> <p>Conclusions</p> <p>Our data indicate that astrocytes are likely responsible for the exacerbated cytokine response seen <it>in vivo </it>post-injury in the absence of CCL2. Furthermore, evidence that CCL2 inhibits cytokine production by astrocytes following IL-1β stimulation, suggests a novel, immunomodulatory role for this chemokine in acute neuroinflammation. Further investigation is required to determine the physiological relevance of this phenomenon, which may have implications for therapeutics targeting CCL2-mediated leukocyte infiltration following TBI.</p

    Interferons in Traumatic Brain and Spinal Cord Injury: Current Evidence for Translational Application

    Get PDF
    This review article provides a general perspective of the experimental and clinical work surrounding the role of type-I, type-II, and type-III interferons (IFNs) in the pathophysiology of brain and spinal cord injury. Since IFNs are themselves well-known therapeutic targets (as well as pharmacological agents), and anti-IFNs monoclonal antibodies are being tested in clinical trials, it is timely to review the basis for the repurposing of these agents for the treatment of brain and spinal cord traumatic injury. Experimental evidence suggests that IFN-α may play a detrimental role in brain trauma, enhancing the pro-inflammatory response while keeping in check astrocyte proliferation; converging evidence from genetic models and neutralization by monoclonal antibodies suggests that limiting IFN-α actions in acute trauma may be a suitable therapeutic strategy. Effects of IFN-β administration in spinal cord and brain trauma have been reported but remain unclear or limited in effect. Despite the involvement in the inflammatory response, the role of IFN-γ remains controversial: although IFN-γ appears to improve the outcome of traumatic spinal cord injury, genetic models have produced either beneficial or detrimental results. IFNs may display opposing actions on the injured CNS relative to the concentration at which they are released and strictly dependent on whether the IFN or their receptors are targeted either via administration of neutralizing antibodies or through genetic deletion of either the mediator or its receptor. To date, IFN-α appears to most promising target for drug repurposing, and monoclonal antibodies anti IFN-α or its receptor may find appropriate use in the treatment of acute brain or spinal cord injury

    Penetration of cefuroxime into the cerebrospinal fluid of patients with traumatic brain injury

    Get PDF
    Cefuroxime levels were measured in cerebrospinal fluid (CSF) and serum of four patients with traumatic brain injury following the implantation of intraventricular catheters. The levels ranged from 0.15 to 2.03 μg/mL in CSF and from 1.8 to 66.9 μg/mL in serum. No ventriculostomy related infections were detecte

    Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The combination of diffuse brain injury with a hypoxic insult is associated with poor outcomes in patients with traumatic brain injury. In this study, we investigated the impact of post-traumatic hypoxia in amplifying secondary brain damage using a rat model of diffuse traumatic axonal injury (TAI). Rats were examined for behavioral and sensorimotor deficits, increased brain production of inflammatory cytokines, formation of cerebral edema, changes in brain metabolism and enlargement of the lateral ventricles.</p> <p>Methods</p> <p>Adult male Sprague-Dawley rats were subjected to diffuse TAI using the Marmarou impact-acceleration model. Subsequently, rats underwent a 30-minute period of hypoxic (12% O<sub>2</sub>/88% N<sub>2</sub>) or normoxic (22% O<sub>2</sub>/78% N<sub>2</sub>) ventilation. Hypoxia-only and sham surgery groups (without TAI) received 30 minutes of hypoxic or normoxic ventilation, respectively. The parameters examined included: 1) behavioural and sensorimotor deficit using the Rotarod, beam walk and adhesive tape removal tests, and voluntary open field exploration behavior; 2) formation of cerebral edema by the wet-dry tissue weight ratio method; 3) enlargement of the lateral ventricles; 4) production of inflammatory cytokines; and 5) real-time brain metabolite changes as assessed by microdialysis technique.</p> <p>Results</p> <p>TAI rats showed significant deficits in sensorimotor function, and developed substantial edema and ventricular enlargement when compared to shams. The additional hypoxic insult significantly exacerbated behavioural deficits and the cortical production of the pro-inflammatory cytokines IL-6, IL-1β and TNF but did not further enhance edema. TAI and particularly TAI+Hx rats experienced a substantial metabolic depression with respect to glucose, lactate, and glutamate levels.</p> <p>Conclusion</p> <p>Altogether, aggravated behavioural deficits observed in rats with diffuse TAI combined with hypoxia may be induced by enhanced neuroinflammation, and a prolonged period of metabolic dysfunction.</p

    Tumor necrosis factor-mediated inhibition of interleukin-18 in the brain: a clinical and experimental study in head-injured patients and in a murine model of closed head injury.

    Get PDF
    Tumor necrosis factor (TNF) and interleukin-(IL)-18 are important mediators of neuroinflammation after closed head injury (CHI). Both mediators have been previously found to be significantly elevated in the intracranial compartment after brain injury, both in patients as well as in experimental model systems. However, the interrelation and regulation of these crucial cytokines within the injured brain has not yet been investigated. The present study was designed to assess a potential regulation of intracranial IL-18 levels by TNF based on a clinical study in head-injured patients and an experimental model in mice. In the first part, we investigated the interrelationship between the daily TNF and IL-18 cerebrospinal fluid levels in 10 patients with severe CHI for up to 14 days after trauma. In the second part of the study, the potential TNF-dependent regulation of intracerebral IL-18 levels was further characterized in an experimental set-up in mice: (1) in a standardized model of CHI in TNF/lymphotoxin-α gene-deficient mice and wild-type (WT) littermates, and (2) by intracerebro-ventricular injection of mouse recombinant TNF in WT C57BL/6 mice. The results demonstrate an inverse correlation of intrathecal TNF and IL-18 levels in head-injured patients and a TNF-dependent inhibition of IL-18 after intracerebral injection in mice. These findings imply a potential new anti-inflammatory mechanism of TNF by attenuation of IL-18, thus confirming the proposed "dual" function of this cytokine in the pathophysiology of traumatic brain injury

    The Design of a Best Execution Market

    Get PDF
    The notion of best execution on securities markets is manifold. Best execution has different meanings to different market participants, therefore, it is difficult to find a unique market structure that meets this requirements for all the participants. Traditional market structures are either static or flexible, meaning that an individual market participant has no influence regarding the concrete market structure’s characteristics, like e. g. the price discovery mechanism, trading frequency or the market transparency. Traditional market structures are either static or flexible, meaning that an individual market participant has no influence regarding the Focussing on customer orientation, we propose a new type of market structure: the dynamic market model, where participants individually choose the characteristics of the market structure for each transaction they perform. Furthermore, this paper offers an approach to design dynamic market models from scratch. We briefly sketch the necessary steps towards a dynamic market model. Traditional market structures are either static or flexible, meaning that an individual market participant has no influence regarding the Finally, we present AMTRAS; the prototype of an electronic trading system that was conceived and implemented following the aforementioned approach. AMTRAS is an software-agent based bond trading system designed for the need of institutional investors. It implements a dynamic market model, a sophisticated product- and partner matching scheme as well as an innovative price discovery approach

    Pro- and anti-inflammatory cytokine expression and histopathological characteristics in canine brain with traumatic brain injury

    Get PDF
    We analyzed the expression level and cellular localization of pro- and anti-inflammatory cytokines and histopathologically characterized canine traumatic brain injury (TBI). Canine TBI brains revealed subarachnoid and cerebral cortical hemorrhage, neutrophilic infiltration, neuronal necrosis, astrocytosis, and vasogenic edema. Immunohistochemical evaluations suggested that both pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α] and anti-inflammatory cytokines [IL-10 and transforming growth factor-beta (TGF-β)] were highly expressed in neurons and neutrophils. In particular, the highest magnitude of expression was identified for IL-1β and TGF-β. This data helps describe the pathologic characteristics of canine TBI, and may help in the design of potential therapeutic approaches to control secondary damage by inflammatory cytokines

    Monitoring the Neuroinflammatory Response Following Acute Brain injury

    Get PDF
    Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) are major contributors to morbidity and mortality. Following the initial insult, patients may deteriorate due to secondary brain damage. The underlying molecular and cellular cascades incorporate components of the innate immune system. There are different approaches to assess and monitor cerebral inflammation in the neuro intensive care unit. The aim of this narrative review is to describe techniques to monitor inflammatory activity in patients with TBI and SAH in the acute setting. The analysis of pro- and anti-inflammatory cytokines in compartments of the central nervous system (CNS), including the cerebrospinal fluid and the extracellular fluid, represent the most common approaches to monitor surrogate markers of cerebral inflammatory activity. Each of these compartments has a distinct biology that reflects local processes and the cross-talk between systemic and CNS inflammation. Cytokines have been correlated to outcomes as well as ongoing, secondary injury progression. Alongside the dynamic, focal assay of humoral mediators, imaging, through positron emission tomography, can provide a global in vivo measurement of inflammatory cell activity, which reveals long-lasting processes following the initial injury. Compared to the innate immune system activated acutely after brain injury, the adaptive immune system is likely to play a greater role in the chronic phase as evidenced by T-cell-mediated autoreactivity toward brain-specific proteins. The most difficult aspect of assessing neuroinflammation is to determine whether the processes monitored are harmful or beneficial to the brain as accumulating data indicate a dual role for these inflammatory cascades following injury. In summary, the inflammatory component of the complex injury cascade following brain injury may be monitored using different modalities. Using a multimodal monitoring approach can potentially aid in the development of therapeutics targeting different aspects of the inflammatory cascade and improve the outcome following TBI and SAH

    The scavenging chemokine receptor ACKR2 has a significant impact on acute mortality rate and early lesion development after traumatic brain injury

    Get PDF
    The atypical chemokine receptor ACKR2 promotes resolution of acute inflammation by operating as a scavenger receptor for inflammatory CC chemokines in several experimental models of inflammatory disorders, however its role in the brain remains unclear. Based on our previous reports of increased expression of inflammatory chemokines and their corresponding receptors following traumatic brain injury (TBI), we hypothesised that ACKR2 modulates neuroinflammation following brain trauma and that its deletion exacerbates cellular inflammation and chemokine production. We demonstrate increased CCL2 and ACKR2 mRNA expression in post-mortem human brain, whereby ACKR2 mRNA levels correlated with later times post-TBI. This data is consistent with the transient upregulation of ACKR2 observed in mouse brain after closed head injury (CHI). As compared to WT animals, ACKR2-/- mice showed a higher mortality rate after CHI, while the neurological outcome in surviving mice was similar. At day 1 post-injury, ACKR2-/- mice displayed aggravated lesion volume and no differences in CCL2 expression and macrophage recruitment relative to WT mice. Reciprocal regulation of ACKR2 and CCL2 expression was explored in cultured astrocytes, which are recognized as the major source of CCL2 and also express ACKR2. ACKR2 mRNA increased as early as 2 hours after an inflammatory challenge in WT astrocytes. As expected, CCL2 expression also dramatically increased at 4 hours in WT astrocytes but was significantly lower in ACKR2-/- astrocytes, possibly indicating a co-regulation of CCL2 and ACKR2 in these cells. Conversely, in vivo, CCL2 mRNA/protein levels were increased similarly in ACKR2-/- and WT brains at 4 and 12 hours after CHI, in line with the lack of differences in cerebral macrophage recruitment and neurological recovery. In conclusion, ACKR2 is induced after TBI and has a significant impact on mortality and lesion development acutely following CHI, while its role in chemokine expression, macrophage activation, brain pathology, and neurological recovery at later time-points is minor. Concordant to evidence in multiple sclerosis experimental models, our data corroborate a distinct role for ACKR2 in cerebral inflammatory processes compared to its reported functions in peripheral tissues
    corecore