3,136 research outputs found

    Practical quantum key distribution over a 48-km optical fiber network

    Full text link
    The secure distribution of the secret random bit sequences known as "key" material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is a new technique for secure key distribution with single-photon transmissions: Heisenberg's uncertainty principle ensures that an adversary can neither successfully tap the key transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). We have developed experimental quantum cryptography systems based on the transmission of non-orthogonal photon states to generate shared key material over multi-kilometer optical fiber paths and over line-of-sight links. In both cases, key material is built up using the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. Here we report the most recent results of our optical fiber experiment in which we have performed quantum key distribution over a 48-km optical fiber network at Los Alamos using photon interference states with the B92 and BB84 quantum key distribution protocols.Comment: 13 pages, 7 figures, .pdf format submitted to Journal of Modern Optic

    Free-space quantum key distribution

    Get PDF
    A working free-space quantum key distribution (QKD) system has been developed and tested over a 205-m indoor optical path at Los Alamos National Laboratory under fluorescent lighting conditions. Results show that free-space QKD can provide secure real-time key distribution between parties who have a need to communicate secretly.Comment: 5 pages, 2 figures, 2 tables. To be published in Physical review A on or about 1 April 199

    Daylight quantum key distribution over 1.6 km

    Get PDF
    Quantum key distribution (QKD) has been demonstrated over a point-to-point 1.6\sim1.6-km atmospheric optical path in full daylight. This record transmission distance brings QKD a step closer to surface-to-satellite and other long-distance applications.Comment: 4 pages, 2 figures, 1 table. Submitted to PRL on 14 January 2000 for publication consideratio

    Practical free-space quantum key distribution over 1 km

    Full text link
    A working free-space quantum key distribution (QKD) system has been developed and tested over an outdoor optical path of ~1 km at Los Alamos National Laboratory under nighttime conditions. Results show that QKD can provide secure real-time key distribution between parties who have a need to communicate secretly. Finally, we examine the feasibility of surface to satellite QKD.Comment: 5 pages, 2 figures, 2 tables. Submitted to Physics Review Letters, May 199

    Quantum Cryptography

    Full text link
    Quantum cryptography is a new method for secret communications offering the ultimate security assurance of the inviolability of a Law of Nature. In this paper we shall describe the theory of quantum cryptography, its potential relevance and the development of a prototype system at Los Alamos, which utilises the phenomenon of single-photon interference to perform quantum cryptography over an optical fiber communications link.Comment: 36 pages in compressed PostScript format, 10 PostScript figures compressed tar fil

    Practical quantum cryptography for secure free-space communications

    Get PDF
    Quantum cryptography is an emerging technology in which two parties may simultaneously generate shared, secret cryptographic key material using the transmission of quantum states of light. The security of these transmissions is based on the inviolability of the laws of quantum mechanics and information-theoretically secure post-processing methods. An adversary can neither successfully tap the quantum transmissions, nor evade detection, owing to Heisenberg's uncertainty principle. In this paper we describe the theory of quantum cryptography, and the most recent results from our experimental free-space system with which we have demonstrated for the first time the feasibility of quantum key generation over a point-to-point outdoor atmospheric path in daylight. We achieved a transmission distance of 0.5 km, which was limited only by the length of the test range. Our results provide strong evidence that cryptographic key material could be generated on demand between a ground station and a satellite (or between two satellites), allowing a satellite to be securely re-keyed on orbit. We present a feasibility analysis of surface-to-satellite quantum key generation.Comment: 12 pages, 4 figure

    Test of CPT and Lorentz invariance from muonium spectroscopy

    Get PDF
    Following a suggestion of Kostelecky et al. we have evaluated a test of CPT and Lorentz invariance from the microwave spectroscopy of muonium. Hamiltonian terms beyond the standard model violating CPT and Lorentz invariance would contribute frequency shifts δν12\delta\nu_{12} and δν34\delta\nu_{34} to ν12\nu_{12} and ν34\nu_{34}, the two transitions involving muon spin flip, which were precisely measured in ground state muonium in a strong magnetic field of 1.7 T. The shifts would be indicated by anti-correlated oscillations in ν12\nu_{12} and ν34\nu_{34} at the earth's sidereal frequency. No time dependence was found in ν12\nu_{12} or ν34\nu_{34} at the level of 20 Hz, limiting the size of some CPT and Lorentz violating parameters at the level of 2×10232\times10^{-23} GeV, representing Planck scale sensitivity and an order of magnitude improvement in sensitivity over previous limits for the muon.Comment: 4 pages, 4 figures, uses REVTeX and epsf, submitted to Phys. Rev. Let

    Electrokinetic behavior of two touching inhomogeneous biological cells and colloidal particles: Effects of multipolar interactions

    Get PDF
    We present a theory to investigate electro-kinetic behavior, namely, electrorotation and dielectrophoresis under alternating current (AC) applied fields for a pair of touching inhomogeneous colloidal particles and biological cells. These inhomogeneous particles are treated as graded ones with physically motivated model dielectric and conductivity profiles. The mutual polarization interaction between the particles yields a change in their respective dipole moments, and hence in the AC electrokinetic spectra. The multipolar interactions between polarized particles are accurately captured by the multiple images method. In the point-dipole limit, our theory reproduces the known results. We find that the multipolar interactions as well as the spatial fluctuations inside the particles can affect the AC electrokinetic spectra significantly.Comment: Revised version with minor changes: References added and discussion extende

    Evolution of local recruitment and its consequences for marine populations

    Get PDF
    Advantages of dispersal on the scales that are possible in a long pelagic larval period are not apparent, even for benthic species. An alternative hypothesis is that wide dispersal may be an incidental byproduct of an ontogenetic migration from and then back to the parental habitat. Under this hypothesis, the water column is a better habitat than the bottom for early development. Because the parental area is often an especially favorable habitat for juveniles and adults, selection may even favor larval retention or larval return rather than dispersal. Where larval capabilities and currents permit, a high percentage of recruits may then be produced from local adults. Expected consequences of a high proportion of local recruitment are stronger links between stock and recruitment, greater vulnerability to recruitment overfishing and local modifications of habitat, greater local benefits from fishery reserves, and possibly more localized adaptation within populations. Export of some larvae is consistent with a high proportion of retained or returning larvae, could stabilize populations linked by larval exchange, and provide connectivity between marine reserves. Even a small amount of larval export could account for the greater gene flow, large ranges, and long evolutionary durations seen in species with long pelagic larval stages

    AKARI and BLAST Observations of the Cassiopeia A Supernova Remnant and Surrounding Interstellar Medium

    Full text link
    We use new large area far infrared maps ranging from 65 - 500 microns obtained with the AKARI and the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) missions to characterize the dust emission toward the Cassiopeia A supernova remnant (SNR). Using the AKARI high resolution data we find a new "tepid" dust grain population at a temperature of ~35K and with an estimated mass of 0.06 solar masses. This component is confined to the central area of the SNR and may represent newly-formed dust in the unshocked supernova ejecta. While the mass of tepid dust that we measure is insufficient by itself to account for the dust observed at high redshift, it does constitute an additional dust population to contribute to those previously reported. We fit our maps at 65, 90, 140, 250, 350, and 500 microns to obtain maps of the column density and temperature of "cold" dust (near 16 K) distributed throughout the region. The large column density of cold dust associated with clouds seen in molecular emission extends continuously from the surrounding interstellar medium to project on the SNR, where the foreground component of the clouds is also detectable through optical, X-ray, and molecular extinction. At the resolution available here, there is no morphological signature to isolate any cold dust associated only with the SNR from this confusing interstellar emission. Our fit also recovers the previously detected "hot" dust in the remnant, with characteristic temperature 100 K.Comment: Accepted for publication in the Astrophysical Journal. Maps and related data are available at http://blastexperiment.info
    corecore