687 research outputs found

    Tracing coco de mer's reproductive history: Pollen and nutrient limitations reduce fecundity

    Get PDF
    This is the final version of the article. Available from Wiley Open Access via the DOI in this record.Habitat degradation can reduce or even prevent the reproduction of previously abundant plant species. To develop appropriate management strategies, we need to understand the reasons for reduced recruitment in degraded ecosystems. The dioecious coco de mer palm (Lodoicea maldivica) produces by far the largest seeds of any plant. It is a keystone species in an ancient palm forest that occurs only on two small islands in the Seychelles, yet contemporary rates of seed production are low, especially in fragmented populations. We developed a method to infer the recent reproductive history of female trees from morphological evidence present on their inflorescences. We then applied this method to investigate the effects of habitat disturbance and soil nutrient conditions on flower and fruit production. The 57 female trees in our sample showed a 19.5-fold variation in flower production among individuals over a seven-year period. Only 77.2% of trees bore developing fruits (or had recently shed fruits), with the number per tree ranging from zero to 43. Flower production was positively correlated with concentrations of available soil nitrogen and potassium and did not differ significantly between closed and degraded habitat. Fruiting success was positively correlated with pollen availability, as measured by numbers and distance of neighboring male trees. Fruit set was lower in degraded habitat than in closed forest, while the proportion of abnormal fruits that failed to develop was higher in degraded habitat. Seed size recorded for a large sample of seeds collected by forest wardens varied widely, with fresh weights ranging from 1 to 18 kg. Synthesis: Shortages of both nutrients and pollen appear to limit seed production of Lodoicea in its natural habitat, with these factors affecting different stages of the reproductive process. Flower production varies widely amongst trees, while seed production is especially low in degraded habitat. The size of seeds is also very variable. We discuss the implications of these findings for managing this ecologically and economically important species.Deutsche Forschungsgemeinschaft. Grant Number: KA 3349/2‐1. Eidgenössische Technische Hochschule Zürich. Grant Number: ETH‐37 12‐

    Chemical Trends in the Lattice Thermal Conductivity of Li(Ni, Mn, Co)O₂ (NMC) Battery Cathodes

    Get PDF
    While the transport of ions and electrons in conventional Li-ion battery cathode materials is well understood, our knowledge of the phonon (heat) transport is still in its infancy. We present a first-principles theoretical investigation of the chemical trends in the phonon frequency dispersion, mode lifetimes, and thermal conductivity in the series of layered lithium transition-metal oxides Li(NixMnyCoz)O2 (x + y + z = 1). The oxidation and spin states of the transition metal cations are found to strongly influence the structural dynamics. Calculations of the thermal conductivity show that LiCoO2 has highest average conductivity of 45.9 W·m–1·K–1 at T = 300 K and the largest anisotropy, followed by LiMnO2 with 8.9 W·m–1·K–1 and LiNiO2 with 6.0 W·m–1·K–1. The much lower thermal conductivity of LiMnO2 and LiNiO2 is found to be due to 1–2 orders of magnitude shorter phonon lifetimes. We further model the properties of binary and ternary transition metal combinations to examine the possible effects of mixing on the thermal transport. These results serve as a guide to ongoing work on the design of multicomponent battery electrodes with more effective thermal management

    Keeping it in the family: strong fine-scale genetic structure and inbreeding in Lodoicea maldivica, the largest-seeded plant in the world

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this recordThe fine-scale spatial genetic structure (FSGS) of plant populations is strongly influenced by patterns of seed dispersal. An extreme case of limited dispersal is found in the charismatic yet endangered palm Lodoicea maldivica, which produces large fruits (up to 20 kg) dispersed only by gravity. To investigate patterns of seed dispersal and FSGS in natural populations we sampled 1252 individual adults and regenerating offspring across the species’ natural range in the Seychelles archipelago, and characterised their genotypes at 12 microsatellite loci. The average dispersal distance was 8.7 ± 0.7 m. Topography had a significant effect on seed dispersal, with plants on steep slopes exhibiting the longest distances. FSGS was intense, especially in younger cohorts. Contrary to what might be expected in a dioecious species, we found high levels of inbreeding, with most neighbouring pairs of male and female trees (≤10 m) being closely related. Nonetheless, levels of genetic diversity were relatively high and similar in the various sampling areas, although these differed in disturbance and habitat fragmentation. We discuss potential trade-offs associated with maternal resource provisioning of progeny, seed dispersal and inbreeding, and consider the implications of our findings for managing this globally significant flagship species

    The Stature of Boys Is Inversely Correlated to the Levels of Their Sertoli Cell Hormones: Do the Testes Restrain the Maturation of Boys?

    Get PDF
    The testes of preadolescent boys appear to be dormant, as they produce only trace levels of testosterone [1]. However, they release supra-adult levels of Müllerian Inhibiting Substance (MIS, anti-Müllerian hormone) and lesser levels of inhibin B (InhB), for unknown reasons [2], [3]. Boys have a variable rate of maturation, which on average is slower than girls. The height of children relative to their parents is an index of their maturity [4], [5]. We report here that a boy's level of MIS and InhB is stable over time and negatively correlates with his height and his height relative to his parent's height. This suggests that boy's with high levels of MIS and InhB are short because they are immature, rather than because they are destined to be short men. The levels of MIS and InhB in the boys did not correlate with known hormonal modulators of growth, and were additive with age and the growth hormone/IGF1 axis as predictors of a boy's height. If MIS and InhB were causal regulators of maturity, then the inter-boy differences in the levels of these hormone produces variation in maturation equivalent to 18-months of development. MIS and InhB may thus account for most of the variation in the rate of male development. If boys lacked these hormones, then an average 5-year-old boy would be over 5 cm taller than age-matched girls, making boys almost as dimorphic as men, for height. This indicates that boys have a high growth potential that is initially suppressed by their testes. The concept of the childhood testes suppressing an adult male feature appears paradoxical. However, the growth of children requires intergenerational transfer of nutrients. Consequently, the MIS/InhB slowing of male growth may have been historically advantageous, as it would minimizes any sex bias in the maternal cost of early child rearing

    SNPs in DNA repair or oxidative stress genes and late subcutaneous fibrosis in patients following single shot partial breast irradiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to evaluate the potential association between single nucleotide polymorphisms related response to radiotherapy injury, such as genes related to DNA repair or enzymes involved in anti-oxidative activities. The paper aims to identify marker genes able to predict an increased risk of late toxicity studying our group of patients who underwent a Single Shot 3D-CRT PBI (SSPBI) after BCS (breast conserving surgery).</p> <p>Methods</p> <p>A total of 57 breast cancer patients who underwent SSPBI were genotyped for SNPs (single nucleotide polymorphisms) in XRCC1, XRCC3, GST and RAD51 by Pyrosequencing technology. Univariate analysis (ORs and 95% CI) was performed to correlate SNPs with the risk of developing ≥ G2 fibrosis or fat necrosis.</p> <p>Results</p> <p>A higher significant risk of developing ≥ G2 fibrosis or fat necrosis in patients with: polymorphic variant <it>GSTP1 </it>(Ile105Val) (OR = 2.9; 95%CI, 0.88-10.14, <it>p </it>= 0.047).</p> <p>Conclusions</p> <p>The presence of some SNPs involved in DNA repair or response to oxidative stress seem to be able to predict late toxicity.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01316328">NCT01316328</a></p

    Greater incidence of depression with hypnotic use than with placebo

    Get PDF
    Abstract Background Although it has been claimed that insomnia causes an increased risk for depression, adequate controlled trials testing this hypothesis have not been available. This study contrasted the incidence of depression among subjects receiving hypnotics in randomized controlled trials versus those receiving placebo. Methods The incidence of depression among patients randomized to hypnotic drugs or placebo was compiled from prescribing information approved by the United States Food and Drug Administration (FDA) and from FDA New Drug Application documents. Available data for zolpidem, zaleplon, eszopiclone, and ramelteon were accessed. Results Data for 5535 patients randomized to a hypnotic and for 2318 randomized to placebo were compiled. The incidence of depression was 2.0% among participants randomized to hypnotics as compared to 0.9% among those randomized in parallel to placebo (p Conclusion Modern hypnotics were associated with an increased incidence of depression in data released by the FDA. This suggests that when there is a risk of depression, hypnotics may be contra-indicated. Preventive treatments such as antidepressant drugs, cognitive-behavioral therapy, or bright light might be preferred. Limitations in the FDA data prevented a formal meta-analysis, and there was a lack of information about drop-out rates and definitions of depression. Trials specifically designed to detect incident depression when treating insomnia with hypnotic drugs and better summarization of adverse events in trials submitted to the FDA are both necessary.</p

    Identification of the Transgenic Integration Site in Immunodeficient tgε26 Human CD3ε Transgenic Mice

    Get PDF
    A strain of human CD3ε transgenic mice, tgε26, exhibits severe immunodeficiency associated with early arrest of T cell development. Complete loss of T cells is observed in homozygous tgε26 mice, but not in heterozygotes, suggesting that genomic disruption due to transgenic integration may contribute to the arrest of T cell development. Here we report the identification of the transgenic integration site in tgε26 mice. We found that multiple copies of the human CD3ε transgene are inserted between the Sstr5 and Metrn loci on chromosome 17, and that this is accompanied by duplication of the neighboring genomic region spanning 323 kb. However, none of the genes in this region were abrogated. These results suggest that the severe immunodeficiency seen in tgε26 mice is not due to gene disruption resulting from transgenic integration

    H2AX phosphorylation screen of cells from radiosensitive cancer patients reveals a novel DNA double-strand break repair cellular phenotype

    Get PDF
    BACKGROUND: About 1-5% of cancer patients suffer from significant normal tissue reactions as a result of radiotherapy (RT). It is not possible at this time to predict how most patients' normal tissues will respond to RT. DNA repair dysfunction is implicated in sensitivity to RT particularly in genes that mediate the repair of DNA double-strand breaks (DSBs). Phosphorylation of histone H2AX (phosphorylated molecules are known as gammaH2AX) occurs rapidly in response to DNA DSBs, and, among its other roles, contributes to repair protein recruitment to these damaged sites. Mammalian cell lines have also been crucial in facilitating the successful cloning of many DNA DSB repair genes; yet, very few mutant cell lines exist for non-syndromic clinical radiosensitivity (RS).\ud \ud METHODS: Here, we survey DNA DSB induction and repair in whole cells from RS patients, as revealed by gammaH2AX foci assays, as potential predictive markers of clinical radiation response.\ud \ud RESULTS: With one exception, both DNA focus induction and repair in cell lines from RS patients were comparable with controls. Using gammaH2AX foci assays, we identified a RS cancer patient cell line with a novel ionising radiation-induced DNA DSB repair defect; these data were confirmed by an independent DNA DSB repair assay.\ud \ud CONCLUSION: gammaH2AX focus measurement has limited scope as a pre-RT predictive assay in lymphoblast cell lines from RT patients; however, the assay can successfully identify novel DNA DSB repair-defective patient cell lines, thus potentially facilitating the discovery of novel constitutional contributions to clinical RS
    corecore