1,815 research outputs found
Evaluating chemical signatures in a coastal upwelling region to reconstruct water mass associations of settlement-stage rockfishes
Characterizing the behavior of larvae prior to settlement is integral to understanding population dynamics because coastal oceanography may facilitate or limit settlement. Otolith microchemistry can be used to determine patterns of fish movement, although there is a limited understanding of how this tool can be applied in coastal marine systems. Our goal in this study was to evaluate the application of otolith microchemistry to characterize water mass associations of settlement-stage marine fish in a coastal upwelling region using a 3-step approach. First, we characterized seawater chemistry of coastal water mass types across multiple years, finding differences in the chemical signatures of strong upwelling, weak upwelling, and relaxation events. Second, we experimentally determined the effect of temperature on the partitioning of trace elements in otoliths for 2 rockfishes (Sebastes spp.) to find that the effect of temperature on otolith partition coefficients was element-and species-specific. Finally, we compared coeval changes in seawater and otolith chemistry of settlement-stage rockfishes that were exposed to naturally variable conditions over an upwelling-relaxation cycle. We subsequently evaluate whether laser ablation inductively coupled plasma mass spectrometry effectively measures otolith chemistry over ecologically relevant time scales. We discovered that elemental concentrations in otoliths respond rapidly to changes in seawater chemistry and reflect equivalent proportional changes. This study provides evidence that elemental signatures are valuable tools for reconstructing larval histories of marine fish in coastal upwelling regions
Transitions in coral reef accretion rates linked to intrinsic ecological shifts on turbid-zone nearshore reefs
This is the final version of the article. Available from the Geological Society of America via the DOI in this record.Nearshore coral communities within turbid settings are typically perceived to have limited reef-building capacity. However, several recent studies have reported reef growth over millennial time scales within such environments and have hypothesized that depth-variable community assemblages may act as equally important controls on reef growth as they do in clear-water settings. Here, we explicitly test this idea using a newly compiled chronostratigraphic record (31 cores, 142 radiometric dates) from seven proximal (but discrete) nearshore coral reefs located along the central Great Barrier Reef (Australia). Uniquely, these reefs span distinct stages of geomorphological maturity, as reflected in their elevations below sea level. Integrated age-depth and ecological data sets indicate that contemporary coral assemblage shifts, associated with changing light availability and wave exposure as reefs shallowed, coincided with transitions in accretion rates at equivalent core depths. Reef initiation followed a regional ∼1 m drop in sea level (1200–800 calibrated yr B.P.) which would have lowered the photic floor and exposed new substrate for coral recruitment by winnowing away fine seafloor sediments. We propose that a two-way feedback mechanism exists where past growth history influences current reef morphology and ecology, ultimately driving future reef accumulation and morphological change. These findings provide the first empirical evidence that nearshore reef growth trajectories are intrinsically driven by changes in coral community structure as reefs move toward sea level, a finding of direct significance for predicting the impacts of extrinsically driven ecological change (e.g., coral-algal phase shifts) on reef growth potential within the wider coastal zone on the Great Barrier Reef.This work was supported by Natural Environment Research Council (NERC) grant NE/J023329/1 to Perry and Smithers and NERC Radiocarbon Dating Allocations 1727.1013 and 1838.1014 to Morgan, Perry, and Gulliver
Projections of coral cover and habitat change on turbid reefs under future sea-level rise
This is the final version. Available on open access from the Royal Society via the DOI in this recordData accessibility:
All field datasets are available from the NERC datacentre: http://www.bgs.ac.uk/services/ngdc/accessions/index.html?simpleText=Great%20Barrier%20Reef#item76769. The model data that support the findings of this study are openly available at: https://github.com/rudyarthur/coral.Global sea-level rise (SLR) is projected to increase water depths above coral reefs. Although the impacts of climate disturbance events on coral cover and three-dimensional complexity are well documented, knowledge of how higher sea levels will influence future reef habitat extent and bioconstruction is limited. Here, we use 31 reef cores, coupled with detailed benthic ecological data, from turbid reefs on the central Great Barrier Reef, Australia, to model broad-scale changes in reef habitat following adjustments to reef geomorphology under different SLR scenarios. Model outputs show that modest increases in relative water depth above reefs (Representative Concentration Pathway (RCP) 4.5) over the next 100 years will increase the spatial extent of habitats with low coral cover and generic diversity. More severe SLR (RCP8.5) will completely submerge reef flats and move reef slope coral communities below the euphotic depth, despite the high vertical accretion rates that characterize these reefs. Our findings suggest adverse future trajectories associated with high emission climate scenarios which could threaten turbid reefs globally and their capacity to act as coral refugia from climate change.Natural Environment Research Council (NERC
Chaotic genetic patchiness without sweepstakes reproduction in the shore crab Hemigrapsus oregonensis
Fine-scale spatial and temporal variation in the genetic composition of benthic recruits, known as chaotic genetic patchiness, is often observed in marine and estuarine species with planktonic larvae. Several explanations have been proposed for chaotic genetic patchiness, including sweepstakes reproductive success, variability in larval source, and natural selection. In a survey of the green shore crab Hemigrapsus oregonensis in Bodega Bay, California, USA, allele frequencies at a mitochondrial single nucleotide polymorphism were found to differ significantly among samples of first-stage zoeae and between zoeae and adults. Sweepstakes reproductive success is unlikely to be responsible because the fecundity of this species is too low and there was no reduction in genetic diversity among zoeae. In principle, influxes of larvae from genetically distinct populations over 500 km to the north could have caused these differences; however, coalescent estimates indicated that gene flow from these distant populations has been very low and it is unlikely that first-stage zoeae would have been transported such great distances. The possibility remains that natural selection, directly or indirectly, is responsible for the observed patchiness in mitochondrial allele frequencies
Unexplained chronic liver disease in Ethiopia: a cross-sectional study
BACKGROUND: Hepatitis B virus (HBV) infection is assumed to be the major cause of chronic liver disease (CLD) in sub-Saharan Africa. The contribution of other aetiological causes of CLD is less well documented and hence opportunities to modulate other potential risk factors are being lost. The aims of this study were to explore the aetiological spectrum of CLD in eastern Ethiopia and to identify plausible underlying risk factors for its development. METHODS: A cross-sectional study was undertaken between April 2015 and April 2016 in two public hospitals in Harar, eastern Ethiopia. The study population comprised of consenting adults with clinical and radiological evidence of chronic liver disease. The baseline evaluation included: (i) a semi-structured interview designed to obtain information about the ingestion of alcohol, herbal medicines and local recreational drugs such as khat (Catha edulis); (ii) clinical examination; (iii) extensive laboratory testing; and, (iv) abdominal ultrasonography. RESULTS: One-hundred-and-fifty patients with CLD (men 72.0%; median age 30 [interquartile range 25-40] years) were included. CLD was attributed to chronic HBV infection in 55 (36.7%) individuals; other aetiological agents were identified in a further 12 (8.0%). No aetiological factors were identified in the remaining 83 (55.3%) patients. The overall prevalence of daily khat use was 78.0%, while alcohol abuse, defined as > 20 g/day in women and > 30 g/day in men, was rare (2.0%). Histological features of toxic liver injury were observed in a subset of patients with unexplained liver injury who underwent liver biopsy. CONCLUSION: The aetiology of CLD in eastern Ethiopia is largely unexplained. The widespread use of khat in the region, together with histopathological findings indicating toxic liver injury, suggests an association which warrants further investigation
Anion-polarisation-directed short-range-order in antiperovskite Li2FeSO
Short-range ordering in cation-disordered cathodes can have a significant effect on their electrochemical properties. Here, we characterise the cation short-range order in the antiperovskite cathode material Li2FeSO, using density functional theory, Monte Carlo simulations, and synchrotron X-ray pair-distribution-function data. We predict partial short-range cation-ordering, characterised by favourable OLi4Fe2 oxygen coordination with a preference for polar cis-OLi4Fe2 over non-polar trans-OLi4Fe2 configurations. This preference for polar cation configurations produces long-range disorder, in agreement with experimental data. The predicted short-range-order preference contrasts with that for a simple point-charge model, which instead predicts preferential trans-OLi4Fe2 oxygen coordination and corresponding long-range crystallographic order. The absence of long-range order in Li2FeSO can therefore be attributed to the relative stability of cis-OLi4Fe2 and other non-OLi4Fe2 oxygen-coordination motifs. We show that this effect is associated with the polarisation of oxide and sulfide anions in polar coordination environments, which stabilises these polar short-range cation orderings. We propose that similar anion-polarisation-directed short-range-ordering may be present in other heterocationic materials that contain cations with different formal charges. Our analysis illustrates the limitations of using simple point-charge models to predict the structure of cation-disordered materials, where other factors, such as anion polarisation, may play a critical role in directing both short- and long-range structural correlations
Price regulation, new entry, and information shock on pharmaceutical market in Taiwan: a nationwide data-based study from 2001 to 2004
<p>Abstract</p> <p>Background</p> <p>Using non-steroidal anti-inflammatory drugs (NSAIDs) as a case, we used Taiwan's National Health Insurance (NHI) database, to empirically explore the association between policy interventions (price regulation, new drug entry, and an information shock) and drug expenditures, utilization, and market structure between 2001 and 2004.</p> <p>Methods</p> <p>All NSAIDs prescribed in ambulatory visits in the NHI system during our study period were included and aggregated quarterly. Segmented regression analysis for interrupted time series was used to examine the associations between two price regulations, two new drug entries (cyclooxygennase-2 inhibitors) and the rofecoxib safety signal and expenditures and utilization of all NSAIDs. Herfindahl index (HHI) was applied to further examine the association between these interventions and market structure of NSAIDs.</p> <p>Results</p> <p>New entry was the only variable that was significantly correlated with changes of expenditures (positive change, p = 0.02) and market structure of the NSAIDs market in the NHI system. The correlation between price regulation (first price regulation, p = 0.62; second price regulation, p = 0.26) and information shock (p = 0.31) and drug expenditure were not statistically significant. There was no significant change in the prescribing volume of NSAIDs per rheumatoid arthritis (RA) or osteoarthritis (OA) ambulatory visit during the observational period. The market share of NSAIDs had also been largely substituted by these new drugs up to 50%, in a three-year period and resulted in a more concentrated market structure (HHI 0.17).</p> <p>Conclusions</p> <p>Our empirical study found that new drug entry was the main driving force behind escalating drug spending, especially by altering the market share.</p
Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer.
BackgroundT cells engineered to express chimeric antigen receptors (CARs) have established efficacy in the treatment of B-cell malignancies, but their relevance in solid tumors remains undefined. Here we report results of the first human trials of CAR-T cells in the treatment of solid tumors performed in the 1990s.MethodsPatients with metastatic colorectal cancer (CRC) were treated in two phase 1 trials with first-generation retroviral transduced CAR-T cells targeting tumor-associated glycoprotein (TAG)-72 and including a CD3-zeta intracellular signaling domain (CART72 cells). In trial C-9701 and C-9702, CART72 cells were administered in escalating doses up to 1010 total cells; in trial C-9701 CART72 cells were administered by intravenous infusion. In trial C-9702, CART72 cells were administered via direct hepatic artery infusion in patients with colorectal liver metastases. In both trials, a brief course of interferon-alpha (IFN-α) was given with each CART72 infusion to upregulate expression of TAG-72.ResultsFourteen patients were enrolled in C-9701 and nine in C-9702. CART72 manufacturing success rate was 100% with an average transduction efficiency of 38%. Ten patients were treated in CC-9701 and 6 in CC-9702. Symptoms consistent with low-grade, cytokine release syndrome were observed in both trials without clear evidence of on target/off tumor toxicity. Detectable, but mostly short-term (≤14 weeks), persistence of CART72 cells was observed in blood; one patient had CART72 cells detectable at 48 weeks. Trafficking to tumor tissues was confirmed in a tumor biopsy from one of three patients. A subset of patients had 111Indium-labeled CART72 cells injected, and trafficking could be detected to liver, but T cells appeared largely excluded from large metastatic deposits. Tumor biomarkers carcinoembryonic antigen (CEA) and TAG-72 were measured in serum; there was a precipitous decline of TAG-72, but not CEA, in some patients due to induction of an interfering antibody to the TAG-72 binding domain of humanized CC49, reflecting an anti-CAR immune response. No radiologic tumor responses were observed.ConclusionThese findings demonstrate the relative safety of CART72 cells. The limited persistence supports the incorporation of co-stimulatory domains in the CAR design and the use of fully human CAR constructs to mitigate immunogenicity
Identification and functional characterisation of CRK12:CYC9, a novel cyclin-dependent kinase (CDK)-cyclin complex in Trypanosoma brucei
The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively
- …