64 research outputs found

    Focus on plasma medicine

    Get PDF
    ‘Plasma Healthcare’ is an emerging interdisciplinary research topic of rapidly growing importance, exploring considerable opportunities at the interface of plasma physics, chemistry and engineering with life sciences. Some of the scientific discoveries reported so far have already demonstrated clear benefits for healthcare in areas of medicine, food safety, environmental hygiene, and cosmetics. Examples include ongoing studies of prion inactivation, chronic wound treatment and plasma-mediated cancer therapy. Current research ranges from basic physical processes, plasma chemical design, to the interaction of plasmas with (i) eukaryotic (mammalian) cells; (ii) prokaryotic (bacteria) cells, viruses, spores and fungi; (iii) DNA, lipids, proteins and cell membranes; and (iv) living human, animal and plant tissues in the presence of biofluids. Of diverse interests in this new field is the need for hospital disinfection, in particular with respect to the alarming increase in bacterial resistance to antibiotics, the concomitant needs in private practices, nursing homes etc, the applications in personal hygiene—and the enticing possibility to ‘design’ plasmas as possible pharmaceutical products, employing ionic as well as molecular agents for medical treatment. The ‘delivery’ of the reactive plasma agents occurs at the gaseous level, which means that there is no need for a carrier medium and access to the treatment surface is optimal. This focus issue provides a close look at the current state of the art in Plasma Medicine with a number of forefront research articles as well as an introductory review

    Levitation of particles in O₂ plasma

    No full text
    Oxygen discharges are scientifically and industrially interesting owing to chemical properties and physical effects. These latter are mostly due to the presence of negative ions affecting the plasma boundary in front of the surface to be processed. In this contribution we use particles levitating in the Oxygen plasma sheath as a diagnostic of the intermediate positions in the sheath between the plasma and the solid surface. The experimental results for three particle sizes are compared with the theoretical levitation force obtained by the modelling of the electronegative plasma sheath and the charging of particles in it.Розряди в кисні представляють науковий і технологічний інтерес завдяки хімічнимвластивостямтафізичним ефектам. Причиною цього є наявність негативних іонів, що впливають на границю плазми перед оброблюваною поверхнею. У даній роботі використовуються частинки, які левітують в приелектродному шарі кисневої плазми як діагностичний засіб для проміжних положень у шарі міжплазмою і твердою поверхнею. Експериментальні результати для трьох розмірів частинок порівнюються з теоретичною силою левітації, отриманоїза допомогою моделювання плазмового шару в електронегативному газі та процесу зарядки в ньому частинок.Разряды в кислороде представляют научный и технологический интерес благодаря химическим свойствам и физическим эффектам. Причиной этого является наличие отрицательных ионов, воздействующих на границу плазмы перед обрабатываемой поверхностью. В данной работе используются частицы, левитирующие в приэлектродном слое кислородной плазмы как диагностическое средство для промежуточных положений в слое между плазмой и твердой поверхностью. Экспериментальные результаты для трех размеров частиц сравниваются с теоретической силой левитации, полученной с помощью моделирования плазменного слоя в электроотрицательном газе и процесса зарядки в нем частиц

    Plasma medicine: an introductory review

    Get PDF
    This introductory review on plasma health care is intended to provide the interested reader with a summary of the current status of this emerging field, its scope, and its broad interdisciplinary approach, ranging from plasma physics, chemistry and technology, to microbiology, biochemistry, biophysics, medicine and hygiene. Apart from the basic plasma processes and the restrictions and requirements set by international health standards, the review focuses on plasma interaction with prokaryotic cells (bacteria), eukaryotic cells (mammalian cells), cell membranes, DNA etc. In so doing, some of the unfamiliar terminology—an unavoidable by-product of interdisciplinary research—is covered and explained. Plasma health care may provide a fast and efficient new path for effective hospital (and other public buildings) hygiene— helping to prevent and contain diseases that are continuously gaining ground as resistance of pathogens to antibiotics grows. The delivery of medically active ‘substances’ at the molecular or ionic level is another exciting topic of research through effects on cell walls (permeabilization), cell excitation (paracrine action) and the introduction of reactive species into cell cytoplasm. Electric fields, charging of surfaces, current flows etc can also affect tissue in a controlled way. The field is young and hopes are high. It is fitting to cover the beginnings in New Journal of Physics, since it is the physics (and nonequilibrium chemistry) of room temperature atmospheric pressure plasmas that have made this development of plasma health care possible

    Rotational kinetics of absorbing dust grains in neutral gas

    Get PDF
    We study the rotational and translational kinetics of massive particulates (dust grains) absorbing the ambient gas. Equations for microscopic phase densities are deduced resulting in the Fokker-Planck equation for the dust component. It is shown that although there is no stationary distribution, the translational and rotational temperatures of dust tend to certain values, which differ from the temperature of the ambient gas. The influence of the inner structure of grains on rotational kinetics is also discussed.Comment: REVTEX4, 20 pages, 2 figure

    26Al in the local interstellar medium

    Get PDF
    We estimate the 1.8 MeV luminosity of the Sco-Cen association due to radioactive decay of 26Al to (4-15) 10e-5 ph cm**-2 s**-1. We propose a low surface brightness, limb brightened bubble for the 1.8 MeV intensity distribution. The detectibility of this distribution with existing gamma-ray telescopes is discussed.Comment: 4 pages, LaTeX, lamuphys macro, to be published in "Lecture Notes in Physics

    Fokker-Planck Equation for Boltzmann-type and Active Particles: transfer probability approach

    Full text link
    Fokker-Planck equation with the velocity-dependent coefficients is considered for various isotropic systems on the basis of probability transition (PT) approach. This method provides the self-consistent and universal description of friction and diffusion for Brownian particles. Renormalization of the friction coefficient is shown to occur for two dimensional (2-D) and three dimensional (3-D) cases, due to the tensorial character of diffusion. The specific forms of PT are calculated for the Boltzmann-type of collisions and for the absorption-type of collisions (the later are typical for dusty plasmas and some other systems). Validity of the Einstein's relation for the Boltzmann-type collisions is analyzed for the velocity-dependent friction and diffusion coefficients. For the Boltzmann-type collisions in the region of very high grain velocity as well as it is always for non-Boltzmann collisions, such as, e.g., absorption collisions, the Einstein relation is violated, although some other relations (determined by the structure of PT) can exist. The generalized friction force is investigated in dusty plasma in the framework of the PT approach. The relation between this force, negative collecting friction force and scattering and collecting drag forces is established.+AFwAXA- The concept of probability transition is used to describe motion of active particles in an ambient medium. On basis of the physical arguments the PT for a simple model of the active particle is constructed and the coefficients of the relevant Fokker-Planck equation are found. The stationary solution of this equation is typical for the simplest self-organized molecular machines.+AFwAXA- PACS number(s): 52.27.Lw, 52.20.Hv, 52.25.Fi, 82.70.-yComment: 18 page

    Interstellar Dust Inside and Outside the Heliosphere

    Get PDF
    In the early 1990s, after its Jupiter flyby, the Ulysses spacecraft identified interstellar dust in the solar system. Since then the in-situ dust detector on board Ulysses continuously monitored interstellar grains with masses up to 10e-13 kg, penetrating deep into the solar system. While Ulysses measured the interstellar dust stream at high ecliptic latitudes between 3 and 5 AU, interstellar impactors were also measured with the in-situ dust detectors on board Cassini, Galileo and Helios, covering a heliocentric distance range between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the inner solar system is altered by the solar radiation pressure force, gravitational focussing and interaction of charged grains with the time varying interplanetary magnetic field. The grains act as tracers of the physical conditions in the local interstellar cloud (LIC). Our in-situ measurements imply the existence of a population of 'big' interstellar grains (up to 10e-13 kg) and a gas-to-dust-mass ratio in the LIC which is a factor of > 2 larger than the one derived from astronomical observations, indicating a concentration of interstellar dust in the very local interstellar medium. Until 2004, the interstellar dust flow direction measured by Ulysses was close to the mean apex of the Sun's motion through the LIC, while in 2005, the data showed a 30 deg shift, the reason of which is presently unknown. We review the results from spacecraft-based in-situ interstellar dust measurements in the solar system and their implications for the physical and chemical state of the LIC.Comment: 10 pages, 2 b/w figures, 1 colour figure; submitted to Space Science Review

    Long-range attraction between particles in dusty plasma and partial surface tension of dusty phase boundary

    Full text link
    Effective potential of a charged dusty particle moving in homogeneous plasma has a negative part that provides attraction between similarly charged dusty particles. A depth of this potential well is great enough to ensure both stability of crystal structure of dusty plasma and sizable value of surface tension of a boundary surface of dusty region. The latter depends on the orientation of the surface relative to the counter-ion flow, namely, it is maximal and positive for the surface normal to the flow and minimal and negative for the surface along the flow. For the most cases of dusty plasma in a gas discharge, a value of the first of them is more than sufficient to ensure stability of lenticular dusty phase void oriented across the counter-ion flow.Comment: LATEX, REVTEX4, 7 pages, 6 figure

    Galileo dust data from the jovian system: 2000 to 2003

    Full text link
    The Galileo spacecraft was orbiting Jupiter between Dec 1995 and Sep 2003. The Galileo dust detector monitored the jovian dust environment between about 2 and 370 R_J (jovian radius R_J = 71492 km). We present data from the Galileo dust instrument for the period January 2000 to September 2003. We report on the data of 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiter's innermost Galilean moon Io. Their impact rates frequently exceeded 10 min^-1. Surprisingly large impact rates up to 100 min^-1 occurred in Aug/Sep 2000 when Galileo was at about 280 R_J from Jupiter. This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the Io torus. Strong variability in the Io dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from Io or the Io torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large number of such bigger grains was measured in March 2003 within a 4-day interval when Galileo was outside Jupiter's magnetosphere at approximately 350 R_J jovicentric distance. Two passages of Jupiter's gossamer rings in 2002 and 2003 provided the first actual comparison of in-situ dust data from a planetary ring with the results inferred from inverting optical images.Comment: 59 pages, 13 figures, 6 tables, submitted to Planetary and Space Scienc

    One year of Galileo dust data from the Jovian system: 1996

    Get PDF
    The dust detector system onboard Galileo records dust impacts in circumjovian space since the spacecraft has been injected into a bound orbit about Jupiter in December 1995. This is the sixth in a series of papers dedicated to presenting Galileo and Ulysses dust data. We present data from the Galileo dust instrument for the period January to December 1996 when the spacecraft completed four orbits about Jupiter (G1, G2, C3 and E4). Data were obtained as high resolution realtime science data or recorded data during a time period of 100 days, or via memory read-outs during the remaining times. Because the data transmission rate of the spacecraft is very low, the complete data set (i. e. all parameters measured by the instrument during impact of a dust particle) for only 2% (5353) of all particles detected could be transmitted to Earth; the other particles were only counted. Together with the data for 2883 particles detected during Galileo's interplanetary cruise and published earlier, complete data of 8236 particles detected by the Galileo dust instrument from 1989 to 1996 are now available. The majority of particles detected are tiny grains (about 10 nm in radius) originating from Jupiter's innermost Galilean moon Io. These grains have been detected throughout the Jovian system and the highest impact rates exceeded 100min1\rm 100 min^{-1}. A small number of grains has been detected in the close vicinity of the Galilean moons Europa, Ganymede and Callisto which belong to impact-generated dust clouds formed by (mostly submicrometer sized) ejecta from the surfaces of the moons (Kr\"uger et al., Nature, 399, 558, 1999). Impacts of submicrometer to micrometer sized grains have been detected thoughout the Jovian system and especially in the region between the Galilean moons.Comment: accepted for Planetary and Space Science, 33 pages, 6 tables, 10 figure
    corecore