154 research outputs found

    Model-free Rheo-AFM probes the viscoelasticity of tunable DNA soft colloids

    Get PDF
    Atomic force microscopy rheological measurements (Rheo‐AFM) of the linear viscoelastic properties of single, charged colloids having a star‐like architecture with a hard core and an extended, deformable double‐stranded DNA (dsDNA) corona dispersed in aqueous saline solutions are reported. This is achieved by analyzing indentation and relaxation experiments performed on individual colloidal particles by means of a novel model‐free Fourier transform method that allows a direct evaluation of the frequency‐dependent linear viscoelastic moduli of the system under investigation. The method provides results that are consistent with those obtained via a conventional fitting procedure of the force‐relaxation curves based on a modified Maxwell model. The outcomes show a pronounced softening of the dsDNA colloids, which is described by an exponential decay of both the Young's and the storage modulus as a function of the salt concentration within the dispersing medium. The strong softening is related to a critical reduction of the size of the dsDNA corona, down to ≈70% of its size in a salt‐free solution. This can be correlated to significant topological changes of the dense star‐like polyelectrolyte forming the corona, which are induced by variations in the density profile of the counterions. Similarly, a significant reduction of the stiffness is obtained by increasing the length of the dsDNA chains, which we attribute to a reduction of the DNA density in the outer region of the corona

    Studying sporadic and familial Alzheimer's disease on iPSC-derived hippocampal and cortical neurons: effect of APOE and Presenilin1

    Get PDF
    Alzheimer's disease (AD) is pathologically characterised by the presence of amyloid-beta plaques, neurofibrillary tangles containing hyperphosphorylated Tau protein, neuroinflammation and neuronal death leading to progressive cognitive impairment. The ¿4 allele of the gene encoding apolipoprotein E (APOE), which is mainly expressed in glial cells, is the strongest genetic risk factor for sporadic AD. Increasing evidence has shown that APOE4 may disrupt normal astrocyte activity, potentially contributing to AD pathology, but the impact of different APOE alleles on astrocyte differentiation, maturation and function is not yet fully understood. To go in depth on these questions, we obtained induced pluripotent stem cells (iPSCs) from fibroblasts of AD patients carrying ¿3 and ¿4 alleles (in homozygosis) and from healthy patients. We also used gene-edited iPSC lines homozygous for the main APOE variants and an APOE knock-out line. iPSC-derived human astrocytes were generated by establishing a differentiation protocol through the consecutive addition of small molecules and growth factors, and the expression of typical markers (GFAP, GLT1, AQP4 and S100beta) and APOE was analysed. In addition, astrocytes exhibited functional features like glutamate uptake capacity and calcium waves production. They also responded to an inflammatory stimulus (IL-1beta and TNF-alpha) or to the presence of amyloid-beta 1-42 peptide by changing their morphology and increasing the expression levels of pro-inflammatory factors and cytokines. Our results shed light on the potential dual role of APOE polymorphism and the individual¿s genetic background in favouring or perhaps preventing AD pathology

    EXPLORING THE IMPACT OF APOE POLYMORPHISM ON THE MOLECULAR, MORPHOLOGICAL AND FUNCTIONAL PROFILE OF iPSC-DERIVED ASTROCYTES FROM ALZHEIMER'S PATIENTS

    Get PDF
    Comunicación presentada a FENS Forum 2022Alzheimer¿s disease (AD) is pathologically characterised by the presence of amyloid-beta plaques, neurofibrillary tangles containing hyperphosphorylated Tau protein, neuroinflammation and neuronal death leading to progressive cognitive impairment. The ¿4 allele of the gene encoding apolipoprotein E (APOE), which is mainly expressed in glial cells, is the strongest genetic risk factor for sporadic AD. Increasing evidence has shown that APOE4 may disrupt normal astrocyte activity, potentially contributing to AD pathology, but the impact of different APOE alleles on astrocyte differentiation, maturation and function is not yet fully understood. To go in depth on these questions, we obtained induced pluripotent stem cells (iPSCs) from fibroblasts of AD patients carrying ¿3 and ¿4 alleles (in homozygosis) and from healthy patients. We also used gene-edited iPSC lines homozygous for the main APOE variants and an APOE knock-out line. iPSC-derived human astrocytes were generated by establishing a differentiation protocol through the consecutive addition of small molecules and growth factors, and the expression of typical markers (GFAP, GLT1, AQP4 and S100beta) and APOE was analysed. In addition, astrocytes exhibited functional features like glutamate uptake capacity and calcium waves production. They also responded to an inflammatory stimulus (IL-1beta and TNF-alpha) or to the presence of amyloid-beta 1-42 peptide by changing their morphology and increasing the expression levels of pro-inflammatory factors and cytokines. Our results shed light on the potential dual role of APOE polymorphism and the individual¿s genetic background in favouring or perhaps preventing AD pathology

    ANALYSING THE MOLECULAR, MORPHOLOGICAL AND FUNCTIONAL PROFILE OF iPSC-DERIVED ASTROCYTES FROM ALZHEIMER'S DISEASE PATIENTS

    Get PDF
    Comunicación presentada en Global Summit on Neurodegenerative Diseases NEURO 2020/22The ε4 allele of the gene encoding apolipoprotein E (APOE), which is mainly expressed in glial cells, is the strongest genetic risk factor for sporadic AD. Increasing evidence has shown that APOE4 may disrupt normal astrocyte activity, potentially contributing to AD pathology, but the impact of different APOE alleles on astrocyte maturation and function as well as their inflammatory profile is not yet fully understood. To answer these questions, we obtained induced pluripotent stem cells (iPSCs) from fibroblasts of AD patients carrying ε3 and ε4 alleles (in homozygosis) and from healthy patients. We also used gene-edited iPSC lines homozygous for the main APOE variants and an APOE knock-out line. iPSC-derived human astrocytes were generated through the consecutive addition of small molecules and growth factors to the culture medium, and the expression of typical markers (GFAP, GLT1, AQP4 and S100beta) was analysed. In addition, astrocytes exhibited functional features like glutamate uptake capacity and calcium waves. They also responded to an inflammatory stimulus (IL-1beta and TNF-alpha) or to the presence of amyloid-beta 1-42 peptide by changing their morphology and increasing the expression levels of pro-inflammatory factors and cytokines. Our results shed light on the potential dual role of APOE polymorphism and the individual's genetic background in favouring or perhaps preventing AD pathology

    Diastolic dysfunction following anthracycline-based chemotherapy in breast cancer patients: incidence and predictors

    Get PDF
    [Abstract] INTRODUCTION: Cardiotoxicity represents a major limitation for the use of anthracyclines or trastuzumab in breast cancer patients. Data from longitudinal studies of diastolic dysfunction (DD) in this group of patients are scarce. The objective of the present study was to assess the incidence, evolution, and predictors of DD in patients with breast cancer treated with anthracyclines. METHODS: This analytical, observational cohort study comprised 100 consecutive patients receiving anthracycline-based chemotherapy (CHT) for breast cancer. All patients underwent clinical evaluation, echocardiogram, and measurement of cardiac biomarkers at baseline, end of anthracycline-based CHT, and at 3 months and 9 months after anthracycline-based CHT was completed. Fifteen patients receiving trastuzumab were followed with two additional visits at 6 and 12 months after the last dose of anthracycline-based CHT. A multivariate analysis was performed to find variables related to the development of DD. Fifteen of the 100 patients had baseline DD and were excluded from this analysis. RESULTS: At the end of follow-up (median: 12 months, interquartile range: 11.1-12.8), 49 patients (57.6%) developed DD. DD was persistent in 36 (73%) but reversible in the remaining 13 patients (27%). Four patients developed cardiotoxicity (three patients had left ventricular systolic dysfunction and one suffered a sudden cardiac death). None of the patients with normal diastolic function developed systolic dysfunction during follow-up. In the logistic regression model, body mass index (BMI) and age were independently related to the development of DD, with the following odds ratio values: BMI: 1.19 (95% confidence interval [CI]: 1.04-1.36), and age: 1.12 (95% CI: 1.03-1.19). Neither cardiac biomarkers nor remaining clinical variables were predictors of DD. CONCLUSION: Development of diastolic dysfunction after treatment with anthracycline or anthracycline- plus trastuzumab chemotherapy is common. BMI and age were independently associated with DD following anthracycline chemotherapy.Instituto de Salud Carlos III; RD06/0014/002Instituto de Salud Carlos III; RD12/0042/006

    Metastable liquid lamellar structures in binary and ternary mixtures of Lennard-Jones fluids

    Full text link
    We have carried out extensive equilibrium molecular dynamics (MD) simulations to investigate the Liquid-Vapor coexistence in partially miscible binary and ternary mixtures of Lennard-Jones (LJ) fluids. We have studied in detail the time evolution of the density profiles and the interfacial properties in a temperature region of the phase diagram where the condensed phase is demixed. The composition of the mixtures are fixed, 50% for the binary mixture and 33.33% for the ternary mixture. The results of the simulations clearly indicate that in the range of temperatures 78<T<102o78 < T < 102 ^{\rm o}K, --in the scale of argon-- the system evolves towards a metastable alternated liquid-liquid lamellar state in coexistence with its vapor phase. These states can be achieved if the initial configuration is fully disordered, that is, when the particles of the fluids are randomly placed on the sites of an FCC crystal or the system is completely mixed. As temperature decreases these states become very well defined and more stables in time. We find that below 90o90 ^{\rm o}K, the alternated liquid-liquid lamellar state remains alive for 80 ns, in the scale of argon, the longest simulation we have carried out. Nonetheless, we believe that in this temperature region these states will be alive for even much longer times.Comment: 18 Latex-RevTex pages including 12 encapsulated postscript figures. Figures with better resolution available upon request. Accepted for publication in Phys. Rev. E Dec. 1st issu

    Efecto analgésico, caracterización fitoquímica y análisis toxicológico del extracto etanólico de hojas de Pereskia lychnidiflora

    Get PDF
    Objetivo. Evaluar el efecto analgésico del extracto etanólico de las hojas de Pereskia lychnidiflora, la prospección de metabolitos secundarios y el análisis toxicológico. Materiales y métodos. La actividad analgésica fue evaluada mediante la prueba del ácido acético y la formalina en ratones NIH a una concentración de 30, 50 y 100 mg/kg de peso corporal, utilizando como control Ibuprofeno a 200 mg/kg y agua destilada como blanco. La prospección de metabolitos secundarios se realizó por el método de cromatografía de capa fina y la toxicidad del extracto fue evaluada in vivo según la dosis máxima de 2000 mg/kg de peso corporal. Resultados. La prospección fitoquímica determinó la presencia de alcaloides, taninos, triterpenos y esteroles como mayores constituyentes químicos. Se determinó que el extracto etanólico de Pereskia lychnidiflora posee una actividad analgésica similar al Ibuprofeno. No se observaron signos de toxicidad en los ratones de experimentación y se clasifica el extracto como no tóxico con una DL50 mayor de 2000 mg/kg. Conclusión. El extracto etanólico de Pereskia lychnidiflora tiene un efecto analgésico antiinflamatorio que podría estar condicionado por la presencia de alcaloides, taninos y esteroles (terpenoides) presentes en esta especie vegetal y puede ser clasificado como no tóxico

    Programa de desarrollo de sistemas integrales de infraestructura y movilidad colectiva. Nuevas formas de movilidad para la vida

    Get PDF
    Las poblaciones urbanas padecen diversos problemas ambientales, de salud, segregación y pérdida de espacios públicos, derroche energético, ruido, así como altas inversiones de tiempo y dinero. Estas situaciones poseen un denominador común: una tecnología inadecuada llamada automóvil unipersonal. Buscamos intervenir tecnológicamente el contexto de las ciudades mediante un sistema de movilidad público, eficiente, no invasivo, silencioso, de bajo costo, saludable y ecológico. En este trabajo presentamos diferentes soluciones, con la intención de ir llevando esta tecnología hacia su transferencia tecnológica.ITESO, A.C.CoecytjalIngenieros Sin Frontera
    corecore