35,869 research outputs found

    Phase Space Reduction for Star-Products: An Explicit Construction for CP^n

    Full text link
    We derive a closed formula for a star-product on complex projective space and on the domain SU(n+1)/S(U(1)×U(n))SU(n+1)/S(U(1)\times U(n)) using a completely elementary construction: Starting from the standard star-product of Wick type on Cn+1∖{0}C^{n+1} \setminus \{ 0 \} and performing a quantum analogue of Marsden-Weinstein reduction, we can give an easy algebraic description of this star-product. Moreover, going over to a modified star-product on Cn+1∖{0}C^{n+1} \setminus \{ 0 \}, obtained by an equivalence transformation, this description can be even further simplified, allowing the explicit computation of a closed formula for the star-product on \CP^n which can easily transferred to the domain SU(n+1)/S(U(1)×U(n))SU(n+1)/S(U(1)\times U(n)).Comment: LaTeX, 17 page

    Finite Cluster Typical Medium Theory for Disordered Electronic Systems

    Get PDF
    We use the recently developed typical medium dynamical cluster (TMDCA) approach~[Ekuma \etal,~\textit{Phys. Rev. B \textbf{89}, 081107 (2014)}] to perform a detailed study of the Anderson localization transition in three dimensions for the Box, Gaussian, Lorentzian, and Binary disorder distributions, and benchmark them with exact numerical results. Utilizing the nonlocal hybridization function and the momentum resolved typical spectra to characterize the localization transition in three dimensions, we demonstrate the importance of both spatial correlations and a typical environment for the proper characterization of the localization transition in all the disorder distributions studied. As a function of increasing cluster size, the TMDCA systematically recovers the re-entrance behavior of the mobility edge for disorder distributions with finite variance, obtaining the correct critical disorder strengths, and shows that the order parameter critical exponent for the Anderson localization transition is universal. The TMDCA is computationally efficient, requiring only a small cluster to obtain qualitative and quantitative data in good agreement with numerical exact results at a fraction of the computational cost. Our results demonstrate that the TMDCA provides a consistent and systematic description of the Anderson localization transition.Comment: 20 Pages, 19 Figures, 3 Table

    Entanglement of two qubits mediated by one-dimensional plasmonic waveguides

    Get PDF
    We investigate qubit-qubit entanglement mediated by plasmons supported by one-dimensional waveguides. We explore both the situation of spontaneous formation of entanglement from an unentangled state and the emergence of driven steady-state entanglement under continuous pumping. In both cases, we show that large values for the concurrence are attainable for qubit-qubit distances larger than the operating wavelength by using plasmonic waveguides that are currently available.Comment: 4 pages, 4 figures. Minor Changes. Journal Reference added. Highlighted in Physic

    Multimode interference devices for focusing in microfluidic channels

    No full text
    Low-cost, compact, automated optical microsystems for chemical analysis, such as microflow cytometers for identification of individual biological cells, require monolithically integrated microlenses for focusing in microfluidic channels, to enable high-resolution scattering and fluorescence measurements. The multimode interference device (MMI), which makes use of self-imaging in multimode waveguides, is shown to be a simple and effective alternative to the microlens for microflow cytometry. The MMIs have been designed, realized, and integrated with microfluidic channels in a silica-based glass waveguide material system. Focal spot sizes of 2.4 ”m for MMIs have been measured at foci as far as 43.7 ”m into the microfluidic channel

    Errors on the inverse problem solution for a noisy spherical gravitational wave antenna

    Get PDF
    A single spherical antenna is capable of measuring the direction and polarization of a gravitational wave. It is possible to solve the inverse problem using only linear algebra even in the presence of noise. The simplicity of this solution enables one to explore the error on the solution using standard techniques. In this paper we derive the error on the direction and polarization measurements of a gravitational wave. We show that the solid angle error and the uncertainty on the wave amplitude are direction independent. We also discuss the possibility of determining the polarization amplitudes with isotropic sensitivity for any given gravitational wave source.Comment: 13 pages, 4 figures, LaTeX2e, IOP style, submitted to CQ

    Synchronizability determined by coupling strengths and topology on Complex Networks

    Full text link
    We investigate in depth the synchronization of coupled oscillators on top of complex networks with different degrees of heterogeneity within the context of the Kuramoto model. In a previous paper [Phys. Rev. Lett. 98, 034101 (2007)], we unveiled how for fixed coupling strengths local patterns of synchronization emerge differently in homogeneous and heterogeneous complex networks. Here, we provide more evidence on this phenomenon extending the previous work to networks that interpolate between homogeneous and heterogeneous topologies. We also present new details on the path towards synchronization for the evolution of clustering in the synchronized patterns. Finally, we investigate the synchronization of networks with modular structure and conclude that, in these cases, local synchronization is first attained at the most internal level of organization of modules, progressively evolving to the outer levels as the coupling constant is increased. The present work introduces new parameters that are proved to be useful for the characterization of synchronization phenomena in complex networks.Comment: 11 pages, 10 figures and 1 table. APS forma

    Metal-Insulator-Transition in a Weakly interacting Disordered Electron System

    Get PDF
    The interplay of interactions and disorder is studied using the Anderson-Hubbard model within the typical medium dynamical cluster approximation. Treating the interacting, non-local cluster self-energy (ÎŁc[G~](i,j≠i)\Sigma_c[{\cal \tilde{G}}](i,j\neq i)) up to second order in the perturbation expansion of interactions, U2U^2, with a systematic incorporation of non-local spatial correlations and diagonal disorder, we explore the initial effects of electron interactions (UU) in three dimensions. We find that the critical disorder strength (WcUW_c^U), required to localize all states, increases with increasing UU; implying that the metallic phase is stabilized by interactions. Using our results, we predict a soft pseudogap at the intermediate WW close to WcUW_c^U and demonstrate that the mobility edge (ωϔ\omega_\epsilon) is preserved as long as the chemical potential, ÎŒ\mu, is at or beyond the mobility edge energy.Comment: 10 Pages, 8 Figures with Supplementary materials include
    • 

    corecore