328 research outputs found

    Little-Parks effect in a superconducting loop with magnetic dot

    Full text link
    We have studied the nucleation of superconductivity in a mesoscopic Al loop, enclosing magnetic dot with perpendicular magnetization. The superconducting phase boundary Tc(B), determined from transport measurements, is asymmetric with respect to the polarity of an applied magnetic field. The maximum critical temperature has been found for a finite applied magnetic field, which is antiparallel to the magnetization of the dot. Theoretical phase boundary shows a good agreement with the experimental data.Comment: to be published in Phys. Rev. B - Brief Report

    Critical temperature oscillations in magnetically coupled superconducting mesoscopic loops

    Full text link
    We study the magnetic interaction between two superconducting concentric mesoscopic Al loops, close to the superconducting/normal phase transition. The phase boundary is measured resistively for the two-loop structure as well as for a reference single loop. In both systems Little-Parks oscillations, periodic in field are observed in the critical temperature Tc versus applied magnetic field H. In the Fourier spectrum of the Tc(H) oscillations, a weak 'low frequency' response shows up, which can be attributed to the inner loop supercurrent magnetic coupling to the flux of the outer loop. The amplitude of this effect can be tuned by varying the applied transport current.Comment: 9 pages, 7 figures, accepted for publication in Phys. Rev.

    Spin states of asteroids in the Eos collisional family

    Full text link
    Eos family was created during a catastrophic impact about 1.3 Gyr ago. Rotation states of individual family members contain information about the history of the whole population. We aim to increase the number of asteroid shape models and rotation states within the Eos collision family, as well as to revise previously published shape models from the literature. Such results can be used to constrain theoretical collisional and evolution models of the family, or to estimate other physical parameters by a thermophysical modeling of the thermal infrared data. We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as input for the convex inversion method, and derive 3D shape models of asteroids together with their rotation periods and orientations of rotation axes. We present updated shape models for 15 asteroids and new shape model determinations for 16 asteroids. Together with the already published models from the publicly available DAMIT database, we compiled a sample of 56 Eos family members with known shape models that we used in our analysis of physical properties within the family. Rotation states of asteroids smaller than ~20 km are heavily influenced by the YORP effect, whilst the large objects more or less retained their rotation state properties since the family creation. Moreover, we also present a shape model and bulk density of asteroid (423) Diotima, an interloper in the Eos family, based on the disk-resolved data obtained by the Near InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope.Comment: Accepted for publication in ICARUS Special Issue - Asteroids: Origin, Evolution & Characterizatio

    Little-Parks effect and multiquanta vortices in a hybrid superconductor--ferromagnet system

    Full text link
    Within the phenomenological Ginzburg-Landau theory we investigate the phase diagram of a thin superconducting film with ferromagnetic nanoparticles. We study the oscillatory dependence of the critical temperature on an external magnetic field similar to the Little-Parks effect and formation of multiquantum vortex structures. The structure of a superconducting state is studied both analytically and numerically.Comment: 7 pages, 1 figure. Submitted to J. Phys.: Condens. Mat

    The non-convex shape of (234) Barbara, the first Barbarian

    Full text link
    Asteroid (234) Barbara is the prototype of a category of asteroids that has been shown to be extremely rich in refractory inclusions, the oldest material ever found in the Solar System. It exhibits several peculiar features, most notably its polarimetric behavior. In recent years other objects sharing the same property (collectively known as "Barbarians") have been discovered. Interferometric observations in the mid-infrared with the ESO VLTI suggested that (234) Barbara might have a bi-lobated shape or even a large companion satellite. We use a large set of 57 optical lightcurves acquired between 1979 and 2014, together with the timings of two stellar occultations in 2009, to determine the rotation period, spin-vector coordinates, and 3-D shape of (234) Barbara, using two different shape reconstruction algorithms. By using the lightcurves combined to the results obtained from stellar occultations, we are able to show that the shape of (234) Barbara exhibits large concave areas. Possible links of the shape to the polarimetric properties and the object evolution are discussed. We also show that VLTI data can be modeled without the presence of a satellite.Comment: 10 pages, 6 figure
    • …
    corecore