8,181 research outputs found

    Large q expansion of the 2D q-states Potts model

    Get PDF
    We present a recursive method to calculate a large q expansion of the 2d q-states Potts model free energies based on the Fortuin-Kasteleyn representation of the model. With this procedure, we compute directly the ordered phase partition function up to order 10 in 1/sqrt{q}. The energy cumulants at the transition can be obtained with suitable resummation and come out large for q less or around 15. As a consequence, expansions of the free energies around the transition temperature are useless for not large enough values of q. In particular the pure phase specific heats are predicted to be much larger, at q < 15, than the values extracted from current finite size scaling analysis of extrema, whereas they agree very well with recent values extracted at the transition point.Comment: 31 pages (tex) including 15 figures (Postscript

    Parallel eigenanalysis of finite element models in a completely connected architecture

    Get PDF
    A parallel algorithm is presented for the solution of the generalized eigenproblem in linear elastic finite element analysis, (K)(phi) = (M)(phi)(omega), where (K) and (M) are of order N, and (omega) is order of q. The concurrent solution of the eigenproblem is based on the multifrontal/modified subspace method and is achieved in a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm was successfully implemented on a tightly coupled multiple-instruction multiple-data parallel processing machine, Cray X-MP. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor or to a logical processor (task) if the number of domains exceeds the number of physical processors. The macrotasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the algorithm are investigated. A parallel finite element dynamic analysis program, p-feda, is documented and the performance of its subroutines in parallel environment is analyzed

    Eigensolution of finite element problems in a completely connected parallel architecture

    Get PDF
    A parallel algorithm for the solution of the generalized eigenproblem in linear elastic finite element analysis, (K)(phi)=(M)(phi)(omega), where (K) and (M) are of order N, and (omega) is of order q is presented. The parallel algorithm is based on a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm has been successfully implemented on a tightly coupled multiple-instruction-multiple-data (MIMD) parallel processing computer, Cray X-MP. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor, or to a logical processor (task) if the number of domains exceeds the number of physical processors. The macro-tasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the algorithm are investigated. For a 64-element rectangular plate, speed-ups of 1.86, 3.13, 3.18 and 3.61 are achieved on two, four, six and eight processors, respectively

    Anticontrol of Chaos Reduces Spectral Emissions

    Get PDF
    Switch-mode power supplies usually emit electromagnetic interferences at the switching frequency and its harmonics. Inducing chaos in these systems has recently been suggested as a means of reducing these spectral emissions, yet at the expense of aggravating the overall magnitude of the ripple in the output voltage. We propose here a new nonlinear feedback, which induces chaos and which is able at the same time to achieve a low spectral emission and to maintain a small ripple in the output. The design of this new and simple controller is based on the propriety that chaotified nonlinear systems present many independent chaotic attractors of small dimensions

    Introduction to the Special Issue on Partial Differential Equations and Geometry-Driven Diffusion in Image Processing and Analysis

    Get PDF
    ©1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.1998.66117

    Tailored metal matrix composites for high-temperature performance

    Get PDF
    A multi-objective tailoring methodology is presented to maximize stiffness and load carrying capacity of a metal matrix cross-ply laminated at elevated temperatures. The fabrication process and fiber volume ratio are used as the design variables. A unique feature is the concurrent effects from fabrication, residual stresses, material nonlinearity, and thermo-mechanical loading on the laminate properties at the post-fabrication phase. For a (0/90)(sub s) graphite/copper laminate, strong coupling was observed between the fabrication process, laminate characteristics, and thermo-mechanical loading. The multi-objective tailoring was found to be more effective than single objective tailoring. Results indicate the potential to increase laminate stiffness and load carrying capacity by controlling the critical parameters of the fabrication process and the laminate

    Light elements in massive single and binary stars

    Full text link
    We highlight the role of the light elements (Li, Be, B) in the evolution of massive single and binary stars, which is largely restricted to a diagnostic value, and foremost so for the element boron. However, we show that the boron surface abundance in massive early type stars contains key information about their foregoing evolution which is not obtainable otherwise. In particular, it allows to constrain internal mixing processes and potential previous mass transfer event for binary stars (even if the companion has disappeared). It may also help solving the mystery of the slowly rotating nitrogen-rich massive main sequence stars.Comment: 10 pages, 8 figures, to appear in proc. IAU-Symp. 268. C. Charbonnel et al., eds
    corecore