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Introduction to the Special Issue on Partial
Differential Equations and Geometry-Driven
Diffusion in Image Processing and Analysis
I. WHAT IS THIS SPECIAL ISSUE ABOUT?

T HE USE of partial differential equations (PDE’s) and
curvature driven flows in image analysis has become

an interest raising research topic in the past few years. Let
represent a gray-level image, where is

the gray-level value. Introducing an artificial time, the image
deforms in a partial differential evolution equation according
to

(1)

where is the evolving image,
is an operator that characterizes the given algo-

rithm, and the image is the initial condition.1 The solution
of the differential equation gives the processed

image at scale. In the case of vector-valued images, a system
of coupled PDE’s of the form of (1) is obtained.

The same formalism can be applied to planar curves (bound-
aries of planar shapes), whereis a function from to ,
or surfaces, functions from to . In this case, the operator

must be restricted to the curve, and all isotropic motions
can be described as a deformation of the curve or surface
in its normal direction, with velocity related to its principal
curvature(s). In more formal terms, a flow of the form

(2)

is obtained, where are the principal curvatures and is
the normal to the curve or surface. A tangential velocity
can be added as well, which may help the analysis but does
not affect the geometry of the flow.

PDE’s can be obtained from variational problems. Assume
a variational approach to an image processing problem for-
mulated as

Min

where is a given energy. Let denote the Eu-
ler–Lagrange derivative (first variation). Since under general
assumptions, a necessary condition forto be a minimizer
of is that , the (local) minima may be computed
via the steady state solution of the equation

where is again an “artificial” time parameter. PDE’s obtained
in this way have been used already for quite some time in
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1F typically depends on the image and the first and second spatial

derivatives.

computer vision and image processing, and the literature is
large. The most classical example is the Dirichlet integral

which is associated with the heat equation

More recently, extensive research is being done on the direct
derivation of evolution equations which are not necessarily
obtained from the energy approaches. This is in fact the case
for a number of curvature equations of the form (2).

Clearly, when introducing a new approach to a given
research area, one must justify its possible advantages. Using
PDE’s and the curve/surface flows in image analysis leads
to model images in a continuous domain. This simplifies the
formalism, which becomes grid independent and isotropic. The
understanding of discrete local nonlinear filters is facilitated
when one lets the grid mesh tend to zero and, thanks to an
asymptotic expansion, rewrite the discrete filter as a partial
differential operator.

Conversely, when the image is represented as a continuous
signal, PDE’s can be seen as the iteration of local filters with
an infinitesimal neighborhood. This interpretation of PDE’s
allows one to unify and classify a number of the known iterated
filters, as well as to derive new ones. Actually, Alvarezet
al. [1] classified all the PDE’s that satisfy several stability
requirements for imaging processing such as locality and
causality. (As pioneered in [31], future research might give
up the locality requirement.)

Further, the PDE formulation is very natural in order
to combine algorithms. If two different image processing
schemes are given by

then they can be combined as , where
. If and above are the corresponding Eu-

ler–Lagrange operators of two energy minimization problems
with energies and , the flow above minimizes the energy

.
Another important advantage of the PDE approach is the

possibility of achieving high accuracy and stability, with the
help of the extensive available research on numerical analysis.
Of course, when considering PDE’s for image processing and
numerical implementations, we are dealing with derivatives of
nonsmooth signals, and the right framework must be defined.
The theory ofviscosity solutions[6] provides a framework for
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rigorously employing a partial differential formalism, in spite
of the fact that the image may be not smooth enough to give
a classical sense to the first and second derivatives involved
in the PDE. Last but not least, this area has a quite unique
level of formal analysis, giving the possibility to provide not
only successful algorithms but also useful theoretical results
like existence and uniqueness of solutions.

II. SOME BACKGROUND

It is difficult to write the history of a topic, and is not
our intention to do it. We just want to mention several
contributions that, in our opinion, have had a major impact
in this area. A larger number of relevant references can be
found in the book edited by ter Haar Romeny [28].

Ideas on the use of PDE’s in image processing go back
at least to Gabor [10], and a bit more recently, to Jain
[13]. However, we believe that the field really took off
thanks to the independent works of Koenderink [17] and
Witkin [37]. (Koenderink initiated the Utrecht scale-space
school, e.g., [9].) These researchers rigorously introduced the
notion of scale-space, that is, the representation of images
simultaneously at multiple scales. Their seminal contribution
is to a large extent the basis of most of the research in
PDE’s for image processing. In their work, the multiscale
image representation is obtained by Gaussian filtering. This is
equivalent to deforming the original image via the classical
heat equation, obtaining in this way an isotropic diffusion
flow. In the late 1980’s, Hummel noted that the heat flow
is not the only parabolic PDE that can be used to create a
scale-space, and indeed argued that an evolution equation that
satisfies the maximum principle will define a scale-space as
well. Maximum principle appears to be a natural mathematical
translation ofcausality.

Perona and Malik’s [26] work on anisotropic diffusion has
been one of the most influential papers in the area. They
proposed to replace Gaussian smoothing, which is equivalent
to isotropic diffusion via the heat flow, by a directional
diffusion that preserves edges. Their work opened a number of
theoretical and practical questions that continue to occupy the
PDE image processing community, e.g., [2], [28]. In the same
framework, the seminal works of Osher and Rudin on shock
filters [25] and Rudinet al. [29] on total variation decreasing
methods explicitly stated the importance and the need for
understanding PDE’s for image processing applications. We
should also point out that about at the same time, Priceet
al. published a very interesting paper on the use of Turing’s
reaction-diffusion theory for a number of image processing
problems [27].

As we have noted, many of the PDE’s used in image
processing and computer vision are based on moving curves
and surfaces with curvature based velocities. In this area, the
level-set numerical method developed by Osher and Sethian
[24] was very influential (see also the early development in the
level-sets methodology for mean curvature motion in [21]).
The idea is to represent the deforming curve, surface, or
image, as the level-set of a higher dimensional hypersurface.
This technique, not only provides more accurate numerical

implementations, but also solves topological issues that were
very difficult to treat before. The representation of objects
as level-sets (zero-sets) is of course not completely new
to the computer vision and image processing communities,
since it is one of the fundamental techniques in mathematical
morphology [35]. This morphological approach is actually the
one adopted in [1] to classify all contrast invariant PDE’s.

Another key contribution in the PDE formalism has been
the general segmentation framework developed by Mumford
and Shah [20]. Their work has unified a large number of image
segmentation approaches, and opened as well a large number
of theoretical and practical problems (see [19]).

Next in [16], Kimia et al. introduced curve evolution meth-
ods into computer vision for a computational theory of planar
shape. (For some of the key mathematical works in curvature
driven flows upon which this work is founded (see [11], [12],
and [24] and the references therein). They defined a “reaction-
diffusion” scale-space that allows one to smooth shapes as
well as to employ the theory of shocks for a hierarchy
of parts combining an anisotropic smoothing effect with a
morphological one.

Finally, the work of Terzopouloset al. on active contours
for image segmentation [14] indirectly also had an important
impact on the PDE’s community. This work has subsequently
been extended by a number of authors using geometric PDE’s.

It should be noted that a number of the above approaches
rely quite heavily on a large number of mathematical advances
in differential geometry for curve evolution [12] and in vis-
cosity solutions theory for curvature motion (see e.g., Evans
and Spruck [7]).

Of course, the frameworks of PDE’s and geometry driven
diffusion have been applied to many problems in image
processing and computer vision, since the seminal works
mentioned above. Examples include continuous mathematical
morphology, invariant shape analysis, shape from shading,
segmentation, object detection, optical flow, stereo, image
denoising, image sharpening, contrast enhancement, and image
quantization. The interested reader is referred to [28] and [30],
as well as the papers in this special issue, for an extensive list
of references.

III. CONTENTS OF THESPECIAL ISSUE

One of the interesting theoretical and practical questions in
this area is the study of PDE’s that are invariant to camera
transformations. This work was initiated by Alvarezet al. [1]
and by Olveret al. [22], [23], [33], [34]. Extensions were
introduced by Faugeras [8]. Dibos presents in this issue a
possible alternative to deal with the high number of derivatives
involved in projective invariant flows.

Following the importance of anisotropic diffusion equations
as introduced by Perona and Malik [26] and extended by
many others, the numerical implementation of such equations
became a central research topic. This is the subject of the paper
by Acton and the one by Weickertet al.

An alternative model for anisotropic diffusion is presented
in the paper by Cottet and El Ayyadi. They introduce interest-
ing concepts like time-delays and relations to neural networks.
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Following the work by Sapiro and Ringach [32] on vector-
valued diffusion and energy minimization, Blomgren and Chan
present a study of total variation minimization for vector
images with special attention to color data.

In two similar independent works, Sochenet al. and Yezzi
propose to treat images as high-dimensional surfaces (graphs),
and process them based on projected curvature motion flows.
The approach can be embedded in a Riemannian geometry
framework. These works are as well motivated by [5], [32],
and [36].

Chambolleet al. analyze the relations between wavelets
based algorithms for image enhancement and energy mini-
mization based ones.

Faugeras and Keriven propose a PDE model to compute
3-D shape from stereo images.

Chan et al. consider the Yanowitz–Bruckstein method for
image thresholding, and give it a variational formulation.

Carmona and Zhong investigate the use of high-order
structure, obtained for example from the image Hessian, in
anisotropic diffusion.

Without any doubt, one of the most interesting results
in the past years of computer vision and image processing
is the concept of active contours or snakes introduced by
Terzopouloset al. [14]. This is the topic of two papers in this
special issue. Xu and Prince extend the potential energy that
attracts the deforming contours to the scene object, making it
more effective. Siddiqiet al. deal with curve evolution based
active contours. They add a new term to the works described
in [4] and [15], which are extensions of [3] and [18].

Chan and Wong investigate the numerical implementation
of algorithms for blind deconvolution based on total variation
techniques. They present fast and accurate solutions. (You and
Kaveh have independently proposed the same model for blind
deconvolution in their ICIP’96 paper.)

Caselleset al. present an axiomatic approach for image
interpolation. They show all the possible (level-set based)
image interpolation algorithms satisfying a number of natural
requirements and compare them.

Teboul et al. present an extended analysis of edge pre-
serving regularization techniques, based on ideas form the
Mumford–Shah [20] segmentation technique and extensions
introduced by Ambrosio and Tortorelli.

Moisan presents a fast numerical curve evolution scheme
that preserves the affine invariance in the affine heat flow.

Based on robust statistics, and the theory of influence
functions, Blacket al. show how to design the stopping term
in the Perona–Malik flow and how to explicitly introduce
coherence in the outliers. The anisotropic diffusion flow they
propose has nontrivial steady state solutions, even without the
addition of a data term.

Most of the research in scale-space theory was done for still
images. Guichard extends this theory to movies.

Perona’s work deals with the regularization of orientation
maps. Since orientations are defined periodically, there is a
need for a special design of diffusion flows and their numerical
implementation. Perona addresses this issue motivated by
physical analogies.
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