12 research outputs found

    Phytotoxic Effects and Mechanism of Action of Essential Oils and Terpenoids

    Get PDF
    [EN] Weeds are one of the major constraints in crop production affecting both yield and quality. The excessive and exclusive use of synthetic herbicides for their management is increasing the development of herbicide-resistant weeds and is provoking risks for the environment and human health. Therefore, the development of new herbicides with multitarget-site activity, new modes of action and low impact on the environment and health are badly needed. The study of plant-plant interactions through the release of secondary metabolites could be a starting point for the identification of new molecules with herbicidal activity. Essential oils (EOs) and their components, mainly terpenoids, as pure natural compounds or in mixtures, because of their structural diversity and strong phytotoxic activity, could be good candidates for the development of new bioherbicides or could serve as a basis for the development of new natural-like low impact synthetic herbicides. EOs and terpenoids have been largely studied for their phytotoxicity and several evidences on their modes of action have been highlighted in the last decades through the use of integrated approaches. The review is focused on the knowledge concerning the phytotoxicity of these molecules, their putative target, as well as their potential mode of action.This research was supported by the Ministerio de Ciencia, Innovacion y Universidades RTI2018-094716-B-100 and by the Italian Ministry of Education, University and Research (MIUR), project SIR-2014 cod. RBSI14L9CE (MEDANAT).Verdeguer Sancho, MM.; Sánchez-Moreiras, AM.; Araniti, F. (2020). Phytotoxic Effects and Mechanism of Action of Essential Oils and Terpenoids. Plants. 9(11):1-52. https://doi.org/10.3390/plants9111571S15291

    Adaptability of invasive plants to climate change

    Full text link
    [EN] Climate change represents one of the greatest environmental challenges of the 21st century, accentuated by deforestation and the degradation of habitats. Changes in vital aspects such as temperature, the amount and distribution of rainfall or the frequency of extreme meteorological phenomena will probably negatively affect ecosystems. The possibilities of invasion will predictably increase, being endemic species especially vulnerable to the effects of climate change. Invasive species are extremely adaptable to climate variability, as evidenced by their current large latitudinal ranges. Generally, invasive plants also have rapid dispersal characteristics, allowing them to vary their ranges in response to changing climatic conditions rapidly. As a result, these species could become more dominant in many areas under changing climatic conditions. In many situations, the environmental stress generated by climate change and invasive plants are synergistic: invasive species can exacerbate the impacts of climate change on ecosystems, and in the same way, climate change can allow new invasions.S.G-O acknowledges a 'Margarita Salas' postdoctoral contract from Universitat Politècnica de València and the Spanish Ministry of Universities, supported by the European Union - Next Generation fundsGonzález-Orenga, S.; Boscaiu, M.; Verdeguer Sancho, MM.; Sánchez-Moreiras, AM.; González, L.; Vicente, O. (2022). Adaptability of invasive plants to climate change. AgroLife Scientific Journal (Online). 11(2):58-65. https://doi.org/10.17930/AGL202227586511

    Control of Problematic Weeds in Mediterranean Vineyards with the Bioherbicide Pelargonic Acid

    Full text link
    [EN] Pelargonic acid (PA) is the only natural herbicide authorized for professional use in Spain. Incorporating PA into an integrated weed management strategy in vineyards may enable a more sustainable production method for grapes. In this work, PA of 55% concentration, formulated by a commercial company (PSEI), was evaluated and applied at 8, 10, 12, and 15 L/ha for weed control in Mediterranean vineyards during 2020 and 2021. A total of 22 different weed species, 16 dicotyledonous and 6 monocotyledonous, were identified in the experimental areas. Previously, greenhouse assays were performed against Avena fatua L. and Chenopodium album L. to determine the dose/response curves. PSEI proved to be a viable post-emergence herbicide with an efficacy of 40.79¿80.90%, depending on the applied dose (higher doses were the most effective). Broader herbicidal activity (20% or more) was obtained against dicotyledonous weeds compared with monocotyledonous. The PA formulation was remarkable in achieving PSEI-similar effects as compared to the market reference but at lower concentrations (around 13% less PA) and doses (1¿8 less L/ha). PA has proved to be a good candidate to control weeds in Mediterranean vineyards when used as a post-emergence broad-spectrum herbicide in the first stages of weed development.This research was funded by SEIPASA.Muñoz, M.; Torres-Pagán, N.; Jouini, A.; Araniti, F.; Sánchez-Moreiras, AM.; Verdeguer Sancho, MM. (2022). Control of Problematic Weeds in Mediterranean Vineyards with the Bioherbicide Pelargonic Acid. Agronomy. 12(10):1-18. https://doi.org/10.3390/agronomy12102476118121

    Phytotoxic Effects of Three Natural Compounds: Pelargonic Acid, Carvacrol, and Cinnamic Aldehyde, against Problematic Weeds in Mediterranean Crops

    Get PDF
    [EN] Weeds and herbicides are important stress factors for crops. Weeds are responsible for great losses in crop yields, more than 50% in some crops if left uncontrolled. Herbicides have been used as the main method for weed control since their development after the Second World War. It is necessary to find alternatives to synthetic herbicides that can be incorporated in an Integrated Weed Management Program, to produce crops subjected to less stress in a more sustainable way. In this work, three natural products: pelargonic acid (PA), carvacrol (CV), and cinnamic aldehyde (CA) were evaluated, under greenhouse conditions in postemergence assays, against problematic weeds in Mediterranean cropsAmaranthus retroflexus,Avena fatua,Portulaca oleracea,andErigeron bonariensis, to determine their phytotoxic potential. The three products showed a potent herbicidal activity, reaching high efficacy (plant death) and damage level in all species, being PA the most effective at all doses applied, followed by CA and CV. These products could be good candidates for bioherbicides formulations.This research was funded by SEIPASA.Muñoz, M.; Torres-Pagán, N.; Peiró Barber, RM.; Guijarro, R.; Sánchez-Moreiras, AM.; Verdeguer Sancho, MM. (2020). Phytotoxic Effects of Three Natural Compounds: Pelargonic Acid, Carvacrol, and Cinnamic Aldehyde, against Problematic Weeds in Mediterranean Crops. Agronomy. 10(6):1-20. https://doi.org/10.3390/agronomy10060791S120106Vos, R., & Bellù, L. G. (2019). Global Trends and Challenges to Food and Agriculture into the 21st Century. Sustainable Food and Agriculture, 11-30. doi:10.1016/b978-0-12-812134-4.00002-9Vats, S. (2014). Herbicides: History, Classification and Genetic Manipulation of Plants for Herbicide Resistance. Sustainable Agriculture Reviews, 153-192. doi:10.1007/978-3-319-09132-7_3Bagavathiannan, M., Singh, V., Govindasamy, P., Abugho, S. B., & Liu, R. (2017). Impact of Concurrent Weed or Herbicide Stress with Other Biotic and Abiotic Stressors on Crop Production. Plant Tolerance to Individual and Concurrent Stresses, 33-45. doi:10.1007/978-81-322-3706-8_3The International Code of Conduct on Pesticide Management. Rome http://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/code/en/Villa, F., Cappitelli, F., Cortesi, P., & Kunova, A. (2017). Fungal Biofilms: Targets for the Development of Novel Strategies in Plant Disease Management. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.00654Da Mastro, G., Fracchiolla, M., Verdini, L., & Montemurro, P. (2006). OREGANO AND ITS POTENTIAL USE AS BIOHERBICIDE. Acta Horticulturae, (723), 335-346. doi:10.17660/actahortic.2006.723.46Seiber, J. N., Coats, J., Duke, S. O., & Gross, A. D. (2014). Biopesticides: State of the Art and Future Opportunities. Journal of Agricultural and Food Chemistry, 62(48), 11613-11619. doi:10.1021/jf504252nDahiya, A., Sharma, R., Sindhu, S., & Sindhu, S. S. (2019). Resource partitioning in the rhizosphere by inoculated Bacillus spp. towards growth stimulation of wheat and suppression of wild oat (Avena fatua L.) weed. Physiology and Molecular Biology of Plants, 25(6), 1483-1495. doi:10.1007/s12298-019-00710-3The International Herbicide-Resistant Weed Database www.weedscience.orgHazrati, H., Saharkhiz, M. J., Moein, M., & Khoshghalb, H. (2018). Phytotoxic effects of several essential oils on two weed species and Tomato. Biocatalysis and Agricultural Biotechnology, 13, 204-212. doi:10.1016/j.bcab.2017.12.014Bajwa, A. A., Sadia, S., Ali, H. H., Jabran, K., Peerzada, A. M., & Chauhan, B. S. (2016). Biology and management of two important Conyza weeds: a global review. Environmental Science and Pollution Research, 23(24), 24694-24710. doi:10.1007/s11356-016-7794-7Graziani, F., Onofri, A., Pannacci, E., Tei, F., & Guiducci, M. (2012). Size and composition of weed seedbank in long-term organic and conventional low-input cropping systems. European Journal of Agronomy, 39, 52-61. doi:10.1016/j.eja.2012.01.008Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(1). doi:10.1186/s12302-016-0070-0Salamci, E., Kordali, S., Kotan, R., Cakir, A., & Kaya, Y. (2007). Chemical compositions, antimicrobial and herbicidal effects of essential oils isolated from Turkish Tanacetum aucheranum and Tanacetum chiliophyllum var. chiliophyllum. Biochemical Systematics and Ecology, 35(9), 569-581. doi:10.1016/j.bse.2007.03.012Synowiec, A., Kalemba, D., Drozdek, E., & Bocianowski, J. (2016). Phytotoxic potential of essential oils from temperate climate plants against the germination of selected weeds and crops. Journal of Pest Science, 90(1), 407-419. doi:10.1007/s10340-016-0759-2Hazrati, H., Saharkhiz, M. J., Niakousari, M., & Moein, M. (2017). Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicology and Environmental Safety, 142, 423-430. doi:10.1016/j.ecoenv.2017.04.041Verdeguer, M., Blázquez, M. A., & Boira, H. (2009). Phytotoxic effects of Lantana camara, Eucalyptus camaldulensis and Eriocephalus africanus essential oils in weeds of Mediterranean summer crops. Biochemical Systematics and Ecology, 37(4), 362-369. doi:10.1016/j.bse.2009.06.003Benarab, H., Fenni, M., Louadj, Y., Boukhabti, H., & Ramdani, M. (2020). Allelopathic activity of essential oil extracts from Artemisia herba-alba Asso. on seed and seedling germination of weed and wheat crops. Acta Scientifica Naturalis, 7(1), 86-97. doi:10.2478/asn-2020-0009Benchaa, S., Hazzit, M., & Abdelkrim, H. (2018). Allelopathic Effect ofEucalyptus citriodoraEssential Oil and Its Potential Use as Bioherbicide. Chemistry & Biodiversity, 15(8), e1800202. doi:10.1002/cbdv.201800202Verdeguer, M., Castañeda, L. G., Torres-Pagan, N., Llorens-Molina, J. A., & Carrubba, A. (2020). Control of Erigeron bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus Essential Oils. Molecules, 25(3), 562. doi:10.3390/molecules25030562Scavo, A., Pandino, G., Restuccia, A., & Mauromicale, G. (2020). Leaf extracts of cultivated cardoon as potential bioherbicide. Scientia Horticulturae, 261, 109024. doi:10.1016/j.scienta.2019.109024Ma, S., Fu, L., He, S., Lu, X., Wu, Y., Ma, Z., & Zhang, X. (2018). Potent herbicidal activity of Sapindus mukorossi Gaertn. against Avena fatua L. and Amaranthus retroflexus L. Industrial Crops and Products, 122, 1-6. doi:10.1016/j.indcrop.2018.05.046Pacanoski, Z., & Mehmeti, A. (2019). Allelopathic effect of Siberian iris (Iris sibirica) on the early growth of wild oat (Avena fatua) and Canada thistle (Cirsium arvense). Journal of Central European Agriculture, 20(4), 1179-1187. doi:10.5513/jcea01/20.4.2047Bainard, L. D., Isman, M. B., & Upadhyaya, M. K. (2006). Phytotoxicity of clove oil and its primary constituent eugenol and the role of leaf epicuticular wax in the susceptibility to these essential oils. Weed Science, 54(5), 833-837. doi:10.1614/ws-06-039r.1Ahuja, N., Singh, H. P., Batish, D. R., & Kohli, R. K. (2015). Eugenol-inhibited root growth in Avena fatua involves ROS-mediated oxidative damage. Pesticide Biochemistry and Physiology, 118, 64-70. doi:10.1016/j.pestbp.2014.11.012Vaughn, S. F., & Spencer, G. F. (1993). Volatile Monoterpenes as Potential Parent Structures for New Herbicides. Weed Science, 41(1), 114-119. doi:10.1017/s0043174500057672Verdeguer, M., García-Rellán, D., Boira, H., Pérez, E., Gandolfo, S., & Blázquez, M. A. (2011). Herbicidal Activity of Peumus boldus and Drimys winterii Essential Oils from Chile. Molecules, 16(1), 403-411. doi:10.3390/molecules16010403Saad, M. M. G., Abdelgaleil, S. A. M., & Suganuma, T. (2012). Herbicidal potential of pseudoguaninolide sesquiterpenes on wild oat, Avena fatua L. Biochemical Systematics and Ecology, 44, 333-337. doi:10.1016/j.bse.2012.06.004Araniti, F., Sánchez-Moreiras, A. M., Graña, E., Reigosa, M. J., & Abenavoli, M. R. (2016). Terpenoidtrans-caryophyllene inhibits weed germination and induces plant water status alteration and oxidative damage in adultArabidopsis. Plant Biology, 19(1), 79-89. doi:10.1111/plb.12471Coleman, R., & Penner, D. (2008). Organic Acid Enhancement of Pelargonic Acid. Weed Technology, 22(1), 38-41. doi:10.1614/wt-06-195.1Dayan, F. E., & Duke, S. O. (2014). Natural Compounds as Next-Generation Herbicides. PLANT PHYSIOLOGY, 166(3), 1090-1105. doi:10.1104/pp.114.239061Lebecque, S., Lins, L., Dayan, F. E., Fauconnier, M.-L., & Deleu, M. (2019). Interactions Between Natural Herbicides and Lipid Bilayers Mimicking the Plant Plasma Membrane. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00329Gruenwald, J., Freder, J., & Armbruester, N. (2010). Cinnamon and Health. Critical Reviews in Food Science and Nutrition, 50(9), 822-834. doi:10.1080/10408390902773052Viazis, S., Akhtar, M., Feirtag, J., & Diez-Gonzalez, F. (2011). Reduction of Escherichia coli O157:H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde. Food Microbiology, 28(1), 149-157. doi:10.1016/j.fm.2010.09.009Kwon, J. A., Yu, C. B., & Park, H. D. (2003). Bacteriocidal effects and inhibition of cell separation of cinnamic aldehyde on Bacillus cereus. Letters in Applied Microbiology, 37(1), 61-65. doi:10.1046/j.1472-765x.2003.01350.xFriedman, M. (2017). Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. Journal of Agricultural and Food Chemistry, 65(48), 10406-10423. doi:10.1021/acs.jafc.7b04344Saad, M. M. G., Gouda, N. A. A., & Abdelgaleil, S. A. M. (2019). Bioherbicidal activity of terpenes and phenylpropenes against Echinochloa crus-galli. Journal of Environmental Science and Health, Part B, 54(12), 954-963. doi:10.1080/03601234.2019.1653121Roselló, J., Sempere, F., Sanz-Berzosa, I., Chiralt, A., & Santamarina, M. P. (2015). Antifungal Activity and Potential Use of Essential Oils AgainstFusarium culmorumandFusarium verticillioides. Journal of Essential Oil Bearing Plants, 18(2), 359-367. doi:10.1080/0972060x.2015.1010601Santamarina, M., Ibáñez, M., Marqués, M., Roselló, J., Giménez, S., & Blázquez, M. (2017). Bioactivity of essential oils in phytopathogenic and post-harvest fungi control. Natural Product Research, 31(22), 2675-2679. doi:10.1080/14786419.2017.1286479Krepker, M., Shemesh, R., Danin Poleg, Y., Kashi, Y., Vaxman, A., & Segal, E. (2017). Active food packaging films with synergistic antimicrobial activity. Food Control, 76, 117-126. doi:10.1016/j.foodcont.2017.01.014Ye, H., Shen, S., Xu, J., Lin, S., Yuan, Y., & Jones, G. S. (2013). Synergistic interactions of cinnamaldehyde in combination with carvacrol against food-borne bacteria. Food Control, 34(2), 619-623. doi:10.1016/j.foodcont.2013.05.032WU, H., WALKER, S., ROLLIN, M. J., TAN, D. K. Y., ROBINSON, G., & WERTH, J. (2007). Germination, persistence, and emergence of flaxleaf fleabane (Conyza bonariensis [L.] Cronquist). Weed Biology and Management, 7(3), 192-199. doi:10.1111/j.1445-6664.2007.00256.xMithila, J., Swanton, C. J., Blackshaw, R. E., Cathcart, R. J., & Hall, J. C. (2008). Physiological Basis for Reduced Glyphosate Efficacy on Weeds Grown Under Low Soil Nitrogen. Weed Science, 56(1), 12-17. doi:10.1614/ws-07-072.1SANDBERG, C. L., MEGGITT, W. F., & PENNER, D. (1980). Absorption, translocation and metabolism of 14C-glyphosate in several weed species*. Weed Research, 20(4), 195-200. doi:10.1111/j.1365-3180.1980.tb00068.xLederer, B., Fujimori, T., Tsujino, Y., Wakabayashi, K., & Böger, P. (2004). Phytotoxic activity of middle-chain fatty acids II: peroxidation and membrane effects. Pesticide Biochemistry and Physiology, 80(3), 151-156. doi:10.1016/j.pestbp.2004.06.010Hasanuzzaman, M., Mohsin, S. M., Bhuyan, M. H. M. B., Bhuiyan, T. F., Anee, T. I., Masud, A. A. C., & Nahar, K. (2020). Phytotoxicity, environmental and health hazards of herbicides: challenges and ways forward. Agrochemicals Detection, Treatment and Remediation, 55-99. doi:10.1016/b978-0-08-103017-2.00003-

    Circulating adrenomedullin in cirrhosis: relationship to hyperdynamic circulation

    Get PDF
    BACKGROUND/AIMS: Peripheral arterial vasodilation may be the key factor in the sodium and water retention of cirrhosis. The mechanism responsible for this vasodilation remains to be fully elucidated. Adrenomedullin is a novel peptide, highly expressed in cardiovascular tissues, with potent and long-lasting vasodilating activity. METHODS: The possible implication of adrenomedullin in the hemodynamic changes of cirrhosis has been investigated. We measured the plasma concentration of adrenomedullin in 20 cirrhotic patients and 11 healthy subjects. In addition, systemic, portal and renal hemodynamics, hormonal factors and renal function parameters were evaluated in the same patients. RESULTS: Circulating adrenomedullin was significantly higher in the group of patients with cirrhosis (72.1; 46-100 vs 21.6; 11-34 fmol/dl, respectively; p<0.02) and was directly correlated with the Pugh score (r: 0.6; p: 0.01), inversely correlated with the creatinine clearance (r: -0.6; p<0.01) and tended to inversely correlate with systemic vascular resistance index (r: -0.46; p: 0.07). There were no portal-peripheral differences in adrenomedullin levels. Transjugular intrahepatic portosystemic shunt insertion did not induce changes in the peripheral concentration of adrenomedullin, but baseline values of this hormone predicted the degree of hyperdynamic circulation after TIPS. CONCLUSIONS: Circulating adrenomedullin is increased in cirrhosis. These levels increase with the severity of the disease, especially in patients with hepatorenal syndrome. This peptide may contribute to vasodilation of cirrhosis

    Herbicidal Activity of Thymbra capitata (L.) Cav. Essential Oil

    Get PDF
    [EN] The bioherbicidal potential ofThymbra capitata(L.) Cav. essential oil (EO) and its main compound carvacrol was investigated. In in vitro assays, the EO blocked the germination and seedling growth ofErigeron canadensisL.,Sonchus oleraceus(L.) L., andChenopodium albumL. at 0.125 mu L/mL, ofSetaria verticillata(L.) P.Beauv.,Avena fatuaL., andSolanum nigrumL. at 0.5 mu L/mL, ofAmaranthus retroflexusL. at 1 mu L/mL and ofPortulaca oleraceaL., andEchinochloa crus-galli(L.) P.Beauv. at 2 mu L/mL. Under greenhouse conditions,T. capitataEO was tested towards the emergent weeds from a soil seedbank in pre and post emergence, showing strong herbicidal potential in both assays at 4 mu L/mL. In addition,T. capitataEO, applied by spraying, was tested againstP. oleracea,A. fatuaandE. crus-galli. The species showed different sensibility to the EO, beingE. crus-gallithe most resistant. Experiments were performed againstA. fatuatestingT. capitataEO and carvacrol applied by spraying or by irrigation. It was verified that the EO was more active at the same doses in monocotyledons applied by irrigation and in dicotyledons applied by spraying. Carvacrol effects onArabidopsisroot morphology were also studied.This research was supported by the Universitat Politècnica de València [project number: SP20120543], by Generalitat Valenciana [project number GV/2014/039], and by the Spanish Ministry of Science, Innovation and Universities [project number: RTI2018¿094716¿B¿I00]. Thanks to Jovano Erris Nugroho and Muhamad Iqbal who collaborate to carry out in vivo experiment 4 during their internship in the Plant Health in Sustainable Cropping Systems Erasmus+ Programme. This research work has been developed as a result of a mobility stay funded by the Erasmus+-KA1 Erasmus Mundus Joint Master Degrees Programme of the European Commission under the PLANT HEALTH Project. Thanks to Xeda Italia S.r.l. for providing us Fitoil always when we need it. Thanks to Vicente Estornell Campos and the Library staff from Polytechnic University of Valencia that assisted us to get some helpful references.Verdeguer Sancho, MM.; Torres-Pagan, N.; Muñoz, M.; Jouini, A.; García-Plasencia, S.; Chinchilla, P.; Berbegal Martinez, M.... (2020). Herbicidal Activity of Thymbra capitata (L.) Cav. Essential Oil. Molecules. 25(12):1-31. https://doi.org/10.3390/molecules25122832S1312512Barros, L., Heleno, S. A., Carvalho, A. M., & Ferreira, I. C. F. R. (2010). Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. LWT - Food Science and Technology, 43(3), 544-550. doi:10.1016/j.lwt.2009.09.024Goudjil, M. B., Zighmi, S., Hamada, D., Mahcene, Z., Bencheikh, S. E., & Ladjel, S. (2020). Biological activities of essential oils extracted from Thymus capitatus (Lamiaceae). South African Journal of Botany, 128, 274-282. doi:10.1016/j.sajb.2019.11.020Gagliano Candela, R., Maggi, F., Lazzara, G., Rosselli, S., & Bruno, M. (2019). The Essential Oil of Thymbra capitata and its Application as A Biocide on Stone and Derived Surfaces. Plants, 8(9), 300. doi:10.3390/plants8090300Tohidi, B., Rahimmalek, M., Arzani, A., & Sabzalian, M. R. (2020). Thymol, carvacrol, and antioxidant accumulation in Thymus species in response to different light spectra emitted by light-emitting diodes. Food Chemistry, 307, 125521. doi:10.1016/j.foodchem.2019.125521Vladimir-Knežević, S., Blažeković, B., Kindl, M., Vladić, J., Lower-Nedza, A., & Brantner, A. (2014). Acetylcholinesterase Inhibitory, Antioxidant and Phytochemical Properties of Selected Medicinal Plants of the Lamiaceae Family. Molecules, 19(1), 767-782. doi:10.3390/molecules19010767BRÄUCHLER, C. (2018). Delimitation and revision of the genus Thymbra (Lamiaceae). Phytotaxa, 369(1), 15. doi:10.11646/phytotaxa.369.1.2Paton, A. J., Springate, D., Suddee, S., Otieno, D., Grayer, R. J., Harley, M. M., … Savolainen, V. (2004). Phylogeny and evolution of basils and allies (Ocimeae, Labiatae) based on three plastid DNA regions. Molecular Phylogenetics and Evolution, 31(1), 277-299. doi:10.1016/j.ympev.2003.08.002Pastore, J. F. B., Harley, R. M., Forest, F., Paton, A., & van den Berg, C. (2011). Phylogeny of the subtribe Hyptidinae (Lamiaceae tribe Ocimeae) as inferred from nuclear and plastid DNA. TAXON, 60(5), 1317-1329. doi:10.1002/tax.605008Salmaki, Y., Zarre, S., Ryding, O., Lindqvist, C., Bräuchler, C., Heubl, G., … Bendiksby, M. (2013). Molecular phylogeny of tribe Stachydeae (Lamiaceae subfamily Lamioideae). Molecular Phylogenetics and Evolution, 69(3), 535-551. doi:10.1016/j.ympev.2013.07.024Salmaki, Y., Kattari, S., Heubl, G., & Bräuchler, C. (2016). Phylogeny of non-monophyletic Teucrium (Lamiaceae: Ajugoideae): Implications for character evolution and taxonomy. Taxon, 65(4), 805-822. doi:10.12705/654.8LI, B., & OLMSTEAD, R. G. (2017). Two new subfamilies in Lamiaceae. Phytotaxa, 313(2), 222. doi:10.11646/phytotaxa.313.2.9Bräuchler, C., Meimberg, H., & Heubl, G. (2010). Molecular phylogeny of Menthinae (Lamiaceae, Nepetoideae, Mentheae) – Taxonomy, biogeography and conflicts. Molecular Phylogenetics and Evolution, 55(2), 501-523. doi:10.1016/j.ympev.2010.01.016World Checklist of Lamiaceae. Facilitated by the Royal Botanic Gardens, Kewhttp://wcsp.science.kew.orgHarley, R. M., Atkins, S., Budantsev, A. L., Cantino, P. D., Conn, B. J., Grayer, R., … Upson, T. (2004). Labiatae. Flowering Plants · Dicotyledons, 167-275. doi:10.1007/978-3-642-18617-2_11Miceli, A., Negro, C., & Tommasi, L. (2006). Essential oil variability in Thymbra capitata (L.) Cav. growing wild in Southern Apulia (Italy). Biochemical Systematics and Ecology, 34(6), 528-535. doi:10.1016/j.bse.2005.12.010Delgado-Adámez, J., Garrido, M., Bote, M. E., Fuentes-Pérez, M. C., Espino, J., & Martín-Vertedor, D. (2017). Chemical composition and bioactivity of essential oils from flower and fruit of Thymbra capitata and Thymus species. Journal of Food Science and Technology, 54(7), 1857-1865. doi:10.1007/s13197-017-2617-5Alves, T. M. de A., Silva, A. F., Brandão, M., Grandi, T. S. M., Smânia, E. de F. A., Smânia Júnior, A., & Zani, C. L. (2000). Biological screening of Brazilian medicinal plants. Memórias do Instituto Oswaldo Cruz, 95(3), 367-373. doi:10.1590/s0074-02762000000300012BOUNATIROU, S., SMITI, S., MIGUEL, M., FALEIRO, L., REJEB, M., NEFFATI, M., … PEDRO, L. (2007). Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chemistry, 105(1), 146-155. doi:10.1016/j.foodchem.2007.03.059Nejad Ebrahimi, S., Hadian, J., Mirjalili, M. H., Sonboli, A., & Yousefzadi, M. (2008). Essential oil composition and antibacterial activity of Thymus caramanicus at different phenological stages. Food Chemistry, 110(4), 927-931. doi:10.1016/j.foodchem.2008.02.083Casiglia, S., Bruno, M., Scandolera, E., Senatore, F., & Senatore, F. (2019). Influence of harvesting time on composition of the essential oil of Thymus capitatus (L.) Hoffmanns. & Link. growing wild in northern Sicily and its activity on microorganisms affecting historical art crafts. Arabian Journal of Chemistry, 12(8), 2704-2712. doi:10.1016/j.arabjc.2015.05.017Grayer, R. J., & Harborne, J. B. (1994). A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry, 37(1), 19-42. doi:10.1016/0031-9422(94)85005-4Kalemba, D., & Kunicka, A. (2003). Antibacterial and Antifungal Properties of Essential Oils. Current Medicinal Chemistry, 10(10), 813-829. doi:10.2174/0929867033457719Ricci, D., Fraternale, D., Giamperi, L., Bucchini, A., Epifano, F., Burini, G., & Curini, M. (2005). Chemical composition, antimicrobial and antioxidant activity of the essential oil of Teucrium marum (Lamiaceae). Journal of Ethnopharmacology, 98(1-2), 195-200. doi:10.1016/j.jep.2005.01.022Al-Mustafa, A. H., & Al-Thuniba, O. Y. (2008). Antioxidant Activity of Some Jordanian Medicinal Plants Used Traditionally for Treatment of Diabetes. Pakistan Journal of Biological Sciences, 11(3), 351-358. doi:10.3923/pjbs.2008.351.358Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., & Mnif, W. (2016). Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines, 3(4), 25. doi:10.3390/medicines3040025Ruberto, G., Biondi, D., & Piattelli, M. (1992). The Essential Oil of SicilianThymus capitatus(L.) Hoffmanns, et Link. Journal of Essential Oil Research, 4(4), 417-418. doi:10.1080/10412905.1992.9698094Saija, A., Speciale, A., Trombetta, D., Leto, C., Tuttolomondo, T., La Bella, S., … Ruberto, G. (2016). Phytochemical, Ecological and Antioxidant Evaluation of Wild Sicilian Thyme: Thymbra capitata (L.) Cav . Chemistry & Biodiversity, 13(12), 1641-1655. doi:10.1002/cbdv.201600072Arras, G., & Grella, G. E. (1992). Wild thyme,Thymus capitatus, essential oil seasonal changes and antimycotic activity. Journal of Horticultural Science, 67(2), 197-202. doi:10.1080/00221589.1992.11516237Tommasi, L., Negro, C., Cerfeda, A., Nutricati, E., Zuccarello, V., De Bellis, L., & Miceli, A. (2007). Influence of Environmental Factors on Essential Oil Variability inThymbra capitata(L.) Cav. Growing Wild in Southern Puglia (Italy). Journal of Essential Oil Research, 19(6), 572-580. doi:10.1080/10412905.2007.9699335Salas, J. B., Téllez, T. R., Alonso, M. J. P., Pardo, F. M. V., de los Ángeles Cases Capdevila, M., & Rodríguez, C. G. (2010). Chemical composition and antioxidant activity of the essential oil ofThymbra capitata(L.) Cav. in Spain. Acta Botanica Gallica, 157(1), 55-63. doi:10.1080/12538078.2010.10516189Rodrigues, L. S., Monteiro, P., Maldoa-Martins, M., Monteiro, A., Povoa, O., & Teixeira, G. (2006). BIODIVERSITY STUDIES ON PORTUGUESE THYMBRA CAPITATA. Acta Horticulturae, (723), 127-132. doi:10.17660/actahortic.2006.723.13El Hadj Ali, I. B., Guetat, A., & Boussaid, M. (2012). Variation of Volatiles in Tunisian Populations of Thymbra capitata (L.) Cav. (Lamiaceae). Chemistry & Biodiversity, 9(7), 1272-1285. doi:10.1002/cbdv.201100344Katz, D. A., Sneh, B., & Friedman, J. (1987). The allelopathic potential ofCoridothymus capitatus L. (Labiatae). Preliminary studies on the roles of the shrub in the inhibition of annuals germination and/or to promote allelopathically active actinomycetes. Plant and Soil, 98(1), 53-66. doi:10.1007/bf02381727Dudai, N., Poljakoff-Mayber, A., Mayer, A. M., Putievsky, E., & Lerner, H. R. (1999). Journal of Chemical Ecology, 25(5), 1079-1089. doi:10.1023/a:1020881825669Saoud, I., Hamrouni, L., Gargouri, S., Amri, I., Hanana, M., Fezzani, T., … Jamoussi, B. (2013). Chemical composition, weed killer and antifungal activities of Tunisian thyme (Thymus capitatusHoff. et Link.) essential oils. Acta Alimentaria, 42(3), 417-427. doi:10.1556/aalim.42.2013.3.15Chaimovitsh, D., Shachter, A., Abu-Abied, M., Rubin, B., Sadot, E., & Dudai, N. (2016). Herbicidal Activity of Monoterpenes Is Associated with Disruption of Microtubule Functionality and Membrane Integrity. Weed Science, 65(1), 19-30. doi:10.1614/ws-d-16-00044.1Verdeguer, M., Castañeda, L. G., Torres-Pagan, N., Llorens-Molina, J. A., & Carrubba, A. (2020). Control of Erigeron bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus Essential Oils. Molecules, 25(3), 562. doi:10.3390/molecules25030562Cordeau, S., Triolet, M., Wayman, S., Steinberg, C., & Guillemin, J.-P. (2016). Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Protection, 87, 44-49. doi:10.1016/j.cropro.2016.04.016Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem, K. R. (2016). Effects of Pesticides on Environment. Plant, Soil and Microbes, 253-269. doi:10.1007/978-3-319-27455-3_13Harker, K. N., & O’Donovan, J. T. (2013). Recent Weed Control, Weed Management, and Integrated Weed Management. Weed Technology, 27(1), 1-11. doi:10.1614/wt-d-12-00109.1Olson, S. (2015). An Analysis of the Biopesticide Market Now and Where it is Going. Outlooks on Pest Management, 26(5), 203-206. doi:10.1564/v26_oct_04Santamarina, M., Ibáñez, M., Marqués, M., Roselló, J., Giménez, S., & Blázquez, M. (2017). Bioactivity of essential oils in phytopathogenic and post-harvest fungi control. Natural Product Research, 31(22), 2675-2679. doi:10.1080/14786419.2017.1286479Tuttolomondo, T., Dugo, G., Leto, C., Cicero, N., Tropea, A., Virga, G., … La Bella, S. (2015). Agronomical and chemical characterisation ofThymbra capitata(L.) Cav. biotypes from Sicily, Italy. Natural Product Research, 29(14), 1289-1299. doi:10.1080/14786419.2014.997726Miguel, M. G., Gago, C., Antunes, M. D., Megías, C., Cortés-Giraldo, I., Vioque, J., … Figueiredo, A. C. (2015). Antioxidant and Antiproliferative Activities of the Essential Oils fromThymbra capitataandThymusSpecies Grown in Portugal. Evidence-Based Complementary and Alternative Medicine, 2015, 1-8. doi:10.1155/2015/851721Karousou, R., Koureas, D. N., & Kokkini, S. (2005). Essential oil composition is related to the natural habitats: Coridothymus capitatus and Satureja thymbra in NATURA 2000 sites of Crete. Phytochemistry, 66(22), 2668-2673. doi:10.1016/j.phytochem.2005.09.020Vasilakoglou, I., Dhima, K., Paschalidis, K., & Ritzoulis, C. (2013). Herbicidal potential onLolium rigidumof nineteen major essential oil components and their synergy. Journal of Essential Oil Research, 25(1), 1-10. doi:10.1080/10412905.2012.751054Hazrati, H., Saharkhiz, M. J., Niakousari, M., & Moein, M. (2017). Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicology and Environmental Safety, 142, 423-430. doi:10.1016/j.ecoenv.2017.04.041Pinheiro, P. F., Costa, A. V., Alves, T. de A., Galter, I. N., Pinheiro, C. A., Pereira, A. F., … Fontes, M. M. P. (2015). Phytotoxicity and Cytotoxicity of Essential Oil from Leaves of Plectranthus amboinicus, Carvacrol, and Thymol in Plant Bioassays. Journal of Agricultural and Food Chemistry, 63(41), 8981-8990. doi:10.1021/acs.jafc.5b03049Tworkoski, T. (2002). Herbicide effects of essential oils. Weed Science, 50(4), 425-431. doi:10.1614/0043-1745(2002)050[0425:heoeo]2.0.co;2Benvenuti, S., Cioni, P. L., Flamini, G., & Pardossi, A. (2017). Weeds for weed control: Asteraceae essential oils as natural herbicides. Weed Research, 57(5), 342-353. doi:10.1111/wre.12266N. MALPASSI, R. (2006). Herbicide effects on cuticle ultrastructure in Eleusine indica and Portulaca oleracea. BIOCELL, 30(1), 51-56. doi:10.32604/biocell.2006.30.051Schreiber, L. (1995). A mechanistic approach towards surfactant/wax interactions: Effects of octaethyleneglycolmonododecylether on sorption and diffusion of organic chemicals in reconstituted cuticular wax of barley leaves. Pesticide Science, 45(1), 1-11. doi:10.1002/ps.2780450102Hull, H. M., Morton, H. L., & Wharrie, J. R. (1975). Environmental influences on cuticle development and resultant foliar penetration. The Botanical Review, 41(4), 421-452. doi:10.1007/bf02860832Kern, A. J., Jackson, L. L., & Dyer, W. E. (1997). Fatty acid and wax biosynthesis in susceptible and triallate-resistantAvena fatuaL. Pesticide Science, 51(1), 21-26. doi:10.1002/(sici)1096-9063(199709)51:13.0.co;2-9SANYAL, D., BHOWMIK, P. C., & REDDY, K. N. (2008). Effects of surfactants on primisulfuron activity in barnyardgrass (Echinochloa crus-galli [L.] Beauv.) and green foxtail (Setaria viridis [L.] Beauv.). Weed Biology and Management, 8(1), 46-53. doi:10.1111/j.1445-6664.2007.00273.xPrinciples of Soil and Plant Water Relations. (2014). doi:10.1016/c2013-0-12871-1Kim, H. K., Park, J., & Hwang, I. (2014). Investigating water transport through the xylem network in vascular plants. Journal of Experimental Botany, 65(7), 1895-1904. doi:10.1093/jxb/eru075Norris, R. F. (1974). PENETRATION OF 2,4-D IN RELATION TO CUTICLE THICKNESS. American Journal of Botany, 61(1), 74-79. doi:10.1002/j.1537-2197.1974.tb06029.xSchönherr, J., & Riederer, M. (1989). Foliar Penetration and Accumulation of Organic Chemicals in Plant Cuticles. Reviews of Environmental Contamination and Toxicology, 1-70. doi:10.1007/978-1-4613-8850-0_1GOURET, E., ROHR, R., & CHAMEL, A. (1993). Ultrastructure and chemical composition of some isolated plant cuticles in relation to their permeability to the herbicide, diuron. New Phytologist, 124(3), 423-431. doi:10.1111/j.1469-8137.1993.tb03832.xRiederer, M., & Schönherr, J. (1985). Accumulation and transport of (2,4-dichlorophenoxy)acetic acid in plant cuticles. Ecotoxicology and Environmental Safety, 9(2), 196-208. doi:10.1016/0147-6513(85)90022-3Melo, C. R., Picanço, M. C., Santos, A. A., Santos, I. B., Pimentel, M. F., Santos, A. C. C., … Bacci, L. (2018). Toxicity of essential oils of Lippia gracilis chemotypes and their major compounds on Diaphania hyalinata and non-target species. Crop Protection, 104, 47-51. doi:10.1016/j.cropro.2017.10.013Araniti, F., Graña, E., Krasuska, U., Bogatek, R., Reigosa, M. J., Abenavoli, M. R., & Sánchez-Moreiras, A. M. (2016). Loss of Gravitropism in Farnesene-Treated Arabidopsis Is Due to Microtubule Malformations Related to Hormonal and ROS Unbalance. PLOS ONE, 11(8), e0160202. doi:10.1371/journal.pone.0160202Smyth, D. R. (2016). Helical growth in plant organs: mechanisms and significance. Development, 143(18), 3272-3282. doi:10.1242/dev.134064Graña, E., Costas-Gil, A., Longueira, S., Celeiro, M., Teijeira, M., Reigosa, M. J., & Sánchez-Moreiras, A. M. (2017). Auxin-like effects of the natural coumarin scopoletin on Arabidopsis cell structure and morphology. Journal of Plant Physiology, 218, 45-55. doi:10.1016/j.jplph.2017.07.007Verbelen, J.-P., Le, J., Vissenberg, K., De Cnodder, T., Vandenbussche, F., Sugimoto, K., & Van Der Straeten, D. (2008). Microtubules And The Control Of Cell Elongation In Arabidopsis Roots. NATO Science for Peace and Security Series C: Environmental Security, 73-90. doi:10.1007/978-1-4020-8843-8_4Blume, Y. B., Krasylenko, Y. A., & Yemets, A. I. (2012). Effects of phytohormones on the cytoskeleton of the plant cell. Russian Journal of Plant Physiology, 59(4), 515-529. doi:10.1134/s1021443712040036López-González, D., Costas-Gil, A., Reigosa, M. J., Araniti, F., & Sánchez-Moreiras, A. M. (2020). A natural indole alkaloid, norharmane, affects PIN expression patterns and compromises root growth in Arabidopsis thaliana. Plant Physiology and Biochemistry, 151, 378-390. doi:10.1016/j.plaphy.2020.03.047The International Herbicide-Resistant Weed Databasewww.weedscience.orgAngelini, L. G., Carpanese, G., Cioni, P. L., Morelli, I., Macchia, M., & Flamini, G. (2003). Essential Oils from Mediterranean Lamiaceae as Weed Germination Inhibitors. Journal of Agricultural and Food Chemistry, 51(21), 6158-6164. doi:10.1021/jf0210728DÍAZ-TIELAS, C., GRAÑA, E., SOTELO, T., REIGOSA, M. J., & SÁNCHEZ-MOREIRAS, A. M. (2012). The natural compound trans-chalcone induces programmed cell death in Arabidopsis thaliana roots. Plant, Cell & Environment, 35(8), 1500-1517. doi:10.1111/j.1365-3040.2012.02506.

    Circulating adrenomedullin in cirrhosis: relationship to hyperdynamic circulation

    No full text
    BACKGROUND/AIMS: Peripheral arterial vasodilation may be the key factor in the sodium and water retention of cirrhosis. The mechanism responsible for this vasodilation remains to be fully elucidated. Adrenomedullin is a novel peptide, highly expressed in cardiovascular tissues, with potent and long-lasting vasodilating activity. METHODS: The possible implication of adrenomedullin in the hemodynamic changes of cirrhosis has been investigated. We measured the plasma concentration of adrenomedullin in 20 cirrhotic patients and 11 healthy subjects. In addition, systemic, portal and renal hemodynamics, hormonal factors and renal function parameters were evaluated in the same patients. RESULTS: Circulating adrenomedullin was significantly higher in the group of patients with cirrhosis (72.1; 46-100 vs 21.6; 11-34 fmol/dl, respectively; p<0.02) and was directly correlated with the Pugh score (r: 0.6; p: 0.01), inversely correlated with the creatinine clearance (r: -0.6; p<0.01) and tended to inversely correlate with systemic vascular resistance index (r: -0.46; p: 0.07). There were no portal-peripheral differences in adrenomedullin levels. Transjugular intrahepatic portosystemic shunt insertion did not induce changes in the peripheral concentration of adrenomedullin, but baseline values of this hormone predicted the degree of hyperdynamic circulation after TIPS. CONCLUSIONS: Circulating adrenomedullin is increased in cirrhosis. These levels increase with the severity of the disease, especially in patients with hepatorenal syndrome. This peptide may contribute to vasodilation of cirrhosis

    Observations of the climate near the surface of Jezero over a half Mars year

    No full text
    International audiencePerseverance landed on Jezero with the most complete suite of environmental sensors ever sent to the surface of another planet. It combines the Mars Environmental Dynamics Analyzer (MEDA), the MastCam-Z and Engineering cameras, SuperCam spectrometers and, finally, the several microphones onboard the Mars 2020 rover. The most recent collection of atmospheric observations at Jezero and their interpretation are building an understanding of what physical processes drive the behavior of the Martian atmosphere near the surface of Jezero. We report on the observed Martian cycles of pressure, temperature, dust opacity with their physical aerosol properties, and the hydrological cycle at Jezero. These cycles have shown different behaviors on time scales from diurnal to seasonal and annual to other locations where we landed before. The differences illustrate the range of environmental processes that one can find near the red planet’s surface. We also report on the observed evolution of the near-surface boundary layer thermodynamics during the day and nighttime regimes
    corecore