1,218 research outputs found

    Common molecular pathways involved in human CD133+/CD34+ progenitor cell expansion and cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Uncovering the molecular mechanism underlying expansion of hematopoietic stem and progenitor cells is critical to extend current therapeutic applications and to understand how its deregulation relates to leukemia. The characterization of genes commonly relevant to stem/progenitor cell expansion and tumor development should facilitate the identification of novel therapeutic targets in cancer.</p> <p>Methods</p> <p>CD34+/CD133+ progenitor cells were purified from human umbilical cord blood and expanded <it>in vitro</it>. Correlated molecular changes were analyzed by gene expression profiling using microarrays covering up to 55,000 transcripts. Genes regulated during progenitor cell expansion were identified and functionally classified. Aberrant expression of such genes in cancer was indicated by <it>in silico </it>SAGE. Differential expression of selected genes was assessed by real-time PCR in hematopoietic cells from chronic myeloid leukemia patients and healthy individuals.</p> <p>Results</p> <p>Several genes and signaling pathways not previously associated with <it>ex vivo </it>expansion of CD133+/CD34+ cells were identified, most of which associated with cancer. Regulation of MEK/ERK and Hedgehog signaling genes in addition to numerous proto-oncogenes was detected during conditions of enhanced progenitor cell expansion. Quantitative real-time PCR analysis confirmed down-regulation of several newly described cancer-associated genes in CD133+/CD34+ cells, including <it>DOCK4 </it>and <it>SPARCL1 </it>tumor suppressors, and parallel results were verified when comparing their expression in cells from chronic myeloid leukemia patients</p> <p>Conclusion</p> <p>Our findings reveal potential molecular targets for oncogenic transformation in CD133+/CD34+ cells and strengthen the link between deregulation of stem/progenitor cell expansion and the malignant process.</p

    Hybrid endoscopic thymectomy : combined transesophageal and transthoracic approach in a survival porcine model with cadaver assessment

    Get PDF
    BACKGROUND: Video-assisted thoracoscopic surgery thymectomy has been used in the treatment of Myastenia Gravis and thymomas (coexisting or not). In natural orifice transluminal endoscopic surgery, new approaches to the thorax are emerging as alternatives to the classic transthoracic endoscopic surgery. The aim of this study was to assess the feasibility and reliability of hybrid endoscopic thymectomy (HET) using a combined transthoracic and transesophageal approach. METHODS: Twelve consecutive in vivo experiments were undertaken in the porcine model (4 acute and 8 survival). The same procedure was assessed in a human cadaver afterward. For HET, an 11-mm trocar was inserted in the 2nd intercostal space in the left anterior axillary line. A 0° 10-mm thoracoscope with a 5-mm working channel was introduced. Transesophageal access was created through a submucosal tunnel using a flexible gastroscope with a single working channel introduced through the mouth. Using both flexible (gastroscope) and rigid (thoracoscope) instruments, the mediastinum was opened; the thymus was dissected, and the vessels were ligated using electrocautery alone. RESULTS: Submucosal tunnel creation and esophagotomy were performed safely without incidents in all animals. Complete thymectomy was achieved in all experiments. All animals in the survival group lived for 14 days. Thoracoscopic and postmortem examination revealed pleural adhesions on site of the surgical procedure with no signs of infection. Histological analysis of the proximal third of the esophagus revealed complete cicatrization of both mucosal defect and myotomy site. In the human cadaver, we were able to replicate all the procedure even though we were not able to identify the thymus. CONCLUSIONS: Hybrid endoscopic thymectomy is feasible and reliable. HET could be regarded as a possible alternative to classic thoracoscopic approach for patients requiring thymectomy.This project was funded by the FCT Grants project PTDC/SAU-OSM/105578/2008

    Temperature Affects the Tripartite Interactions between Bacteriophage WO, Wolbachia, and Cytoplasmic Incompatibility

    Get PDF
    Wolbachia infections are a model for understanding intracellular, bacterial symbioses. While the symbiosis is often studied from a binary perspective of host and bacteria, it is increasingly apparent that additional trophic levels can influence the symbiosis. For example, Wolbachia in arthropods harbor a widespread temperate bacteriophage, termed WO, that forms virions and rampantly transfers between coinfections. Here we test the hypothesis that temperatures at the extreme edges of an insect's habitable range alter bacteriophage WO inducibility and in turn, Wolbachia densities and the penetrance of cytoplasmic incompatibility. We report four key findings using the model wasp, Nasonia vitripennis: First, both cold treatment at 18 C and heat treatment at 30 C reduce Wolbachia densities by as much as 74% relative to wasps reared at 25 C. Second, in all cases where Wolbachia densities decline due to temperature changes, phage WO densities increase and inversely associate with Wolbachia densities. Heat has a marked effect on phage WO, yielding phage densities that are 552% higher than the room temperature control. Third, there is a significant affect of insect family on phage WO and endoysmbiont densities. Fourth, at extreme temperatures, there was a temperature-mediated adjustment to the density threshold at which Wolbachia cause complete cytoplasmic incompatibility. Taken together, these results demonstrate that temperature simultaneously affects phage WO densities, endosymbiont densities, and the penetrance of cytoplasmic incompatibility. While temperature shock enhances bacteriophage inducibility and the ensuing bacterial mortality in a wide range of medically and industrially-important bacteria, this is the first investigation of the associations in an obligate intracellular bacteria. Implications to a SOS global sensing feedback mechanism in Wolbachia are discussed

    Managing ethnic conflict : the menu of institutional engineering

    Get PDF
    The debate on institutional engineering offers options to manage ethnic and other conflicts. This contribution systematically assesses the logic of these institutional designs and the empirical evidence on their functioning. Generally, institutions can work on ethnic conflict by either accommodating (“consociationalists”) or denying (“integrationists”) ethnicity in politics. Looking at individual and combined institutions (e.g. state structure, electoral system, forms of government), the literature review finds that most designs are theoretically ambivalent and that empirical evidence on their effectiveness is mostly inconclusive. The following questions remain open: a) Is politicized ethnicity really a conflict risk? b) What impact does the whole “menu” (not just single institutions) have? and c) How are effects conditioned by the exact nature of conflict risks

    Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods

    Get PDF
    Background: Alanine scanning mutagenesis is a powerful experimental methodology for investigating the structural and energetic characteristics of protein complexes. Individual aminoacids are systematically mutated to alanine and changes in free energy of binding (Delta Delta G) measured. Several experiments have shown that protein-protein interactions are critically dependent on just a few residues ("hot spots") at the interface. Hot spots make a dominant contribution to the free energy of binding and if mutated they can disrupt the interaction. As mutagenesis studies require significant experimental efforts, there is a need for accurate and reliable computational methods. Such methods would also add to our understanding of the determinants of affinity and specificity in protein-protein recognition.Results: We present a novel computational strategy to identify hot spot residues, given the structure of a complex. We consider the basic energetic terms that contribute to hot spot interactions, i.e. van der Waals potentials, solvation energy, hydrogen bonds and Coulomb electrostatics. We treat them as input features and use machine learning algorithms such as Support Vector Machines and Gaussian Processes to optimally combine and integrate them, based on a set of training examples of alanine mutations. We show that our approach is effective in predicting hot spots and it compares favourably to other available methods. In particular we find the best performances using Transductive Support Vector Machines, a semi-supervised learning scheme. When hot spots are defined as those residues for which Delta Delta G >= 2 kcal/mol, our method achieves a precision and a recall respectively of 56% and 65%.Conclusion: We have developed an hybrid scheme in which energy terms are used as input features of machine learning models. This strategy combines the strengths of machine learning and energy-based methods. Although so far these two types of approaches have mainly been applied separately to biomolecular problems, the results of our investigation indicate that there are substantial benefits to be gained by their integration

    Difficulties in the revaccination program of hematopoietic stem cell transplantation recipients

    Get PDF
    ABSTRACT Hematopoietic stem cell transplant (HSCT) recipients should be routinely revaccinated after transplantation. We evaluated the difficulties met in the revaccination program and how a prospective and tailored follow-up could help to overcome these obstacles. HSCT recipients (n=122) were prospectively followed up and categorized into Group 1 (n=72), recipients who had already started the revaccination program, and Group 2 (n=50), recipients starting their vaccines. Whenever a difficulty was reported, interventions and subsequent evaluations were performed. Reported problems were related to patient compliance, HSCT center and/or vaccination center. Problems related to patient compliance were less frequent than those related to HSCT center modifications of previous recommendations, or to errors made by the vaccination center. The main gap found was vaccination delays (81.9%). Advisory intervention was needed in 64% and 46% of Group 1 and Group 2, respectively (p=0.05), and was partially successful in around 70% of the cases. Total resolution was achieved in more than 35% in both groups. Improvements are needed in the Brazilian vaccination program for HSCT recipients to assure a complete and updated revaccination schedule. HSCT centers should assign nurses and transplant infectious disease specialist physicians to organize the revaccination schedule and to monitor the program development
    • 

    corecore