196 research outputs found
Fourier analysis of wave turbulence in a thin elastic plate
The spatio-temporal dynamics of the deformation of a vibrated plate is
measured by a high speed Fourier transform profilometry technique. The
space-time Fourier spectrum is analyzed. It displays a behavior consistent with
the premises of the Weak Turbulence theory. A isotropic continuous spectrum of
waves is excited with a non linear dispersion relation slightly shifted from
the linear dispersion relation. The spectral width of the dispersion relation
is also measured. The non linearity of this system is weak as expected from the
theory. Finite size effects are discussed. Despite a qualitative agreement with
the theory, a quantitative mismatch is observed which origin may be due to the
dissipation that ultimately absorbs the energy flux of the Kolmogorov-Zakharov
casade.Comment: accepted for publication in European Physical Journal B see
http://www.epj.or
The 3D structure of the Lagrangian acceleration in turbulent flows
We report experimental results on the three dimensional Lagrangian
acceleration in highly turbulent flows. Tracer particles are tracked optically
using four silicon strip detectors from high energy physics that provide high
temporal and spatial resolution. The components of the acceleration are shown
to be statistically dependent. The probability density function (PDF) of the
acceleration magnitude is comparable to a log-normal distribution. Assuming
isotropy, a log-normal distribution of the magnitude can account for the
observed dependency of the components. The time dynamics of the acceleration
components is found to be typical of the dissipation scales whereas the
magnitude evolves over longer times, possibly close to the integral time scale.Comment: accepted for publication in Physical Review Letter
Acceleration and vortex filaments in turbulence
We report recent results from a high resolution numerical study of fluid
particles transported by a fully developed turbulent flow. Single particle
trajectories were followed for a time range spanning more than three decades,
from less than a tenth of the Kolmogorov time-scale up to one large-eddy
turnover time. We present some results concerning acceleration statistics and
the statistics of trapping by vortex filaments.Comment: 10 pages, 5 figure
Measurement of Lagrangian velocity in fully developed turbulence
We have developed a new experimental technique to measure the Lagrangian
velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler
tracking. This method yields a direct access to the velocity of a single
particule at a turbulent Reynolds number . Its dynamics is
analyzed with two decades of time resolution, below the Lagrangian correlation
time. We observe that the Lagrangian velocity spectrum has a Lorentzian form
, in agreement
with a Kolmogorov-like scaling in the inertial range. The probability density
function (PDF) of the velocity time increments displays a change of shape from
quasi-Gaussian a integral time scale to stretched exponential tails at the
smallest time increments. This intermittency, when measured from relative
scaling exponents of structure functions, is more pronounced than in the
Eulerian framework.Comment: 4 pages, 5 figures. to appear in PR
Lagrangian Velocity Statistics in Turbulent Flows: Effects of Dissipation
We use the multifractal formalism to describe the effects of dissipation on
Lagrangian velocity statistics in turbulent flows. We analyze high Reynolds
number experiments and direct numerical simulation (DNS) data. We show that
this approach reproduces the shape evolution of velocity increment probability
density functions (PDF) from Gaussian to stretched exponentials as the time lag
decreases from integral to dissipative time scales. A quantitative
understanding of the departure from scaling exhibited by the magnitude
cumulants, early in the inertial range, is obtained with a free parameter
function D(h) which plays the role of the singularity spectrum in the
asymptotic limit of infinite Reynolds number. We observe that numerical and
experimental data are accurately described by a unique quadratic D(h) spectrum
which is found to extend from to , as
the signature of the highly intermittent nature of Lagrangian velocity
fluctuations.Comment: 5 pages, 3 figures, to appear in PR
Long time correlations in Lagrangian dynamics: a key to intermittency in turbulence
New aspects of turbulence are uncovered if one considers flow motion from the
perspective of a fluid particle (known as the Lagrangian approach) rather than
in terms of a velocity field (the Eulerian viewpoint). Using a new experimental
technique, based on the scattering of ultrasounds, we have obtained a direct
measurement of particle velocities, resolved at all scales, in a fully
turbulent flow. It enables us to approach intermittency in turbulence from a
dynamical point of view and to analyze the Lagrangian velocity fluctuations in
the framework of random walks. We find experimentally that the elementary steps
in the 'walk' have random uncorrelated directions but a magnitude that is
extremely long-range correlated in time. Theoretically, we study a Langevin
equation that incorporates these features and we show that the resulting
dynamics accounts for the observed one- and two-point statistical properties of
the Lagrangian velocity fluctuations. Our approach connects the intermittent
statistical nature of turbulence to the dynamics of the flow.Comment: 4 pages, 4 figure
Intermittency of velocity time increments in turbulence
We analyze the statistics of turbulent velocity fluctuations in the time
domain. Three cases are computed numerically and compared: (i) the time traces
of Lagrangian fluid particles in a (3D) turbulent flow (referred to as the
"dynamic" case); (ii) the time evolution of tracers advected by a frozen
turbulent field (the "static" case), and (iii) the evolution in time of the
velocity recorded at a fixed location in an evolving Eulerian velocity field,
as it would be measured by a local probe (referred to as the "virtual probe"
case). We observe that the static case and the virtual probe cases share many
properties with Eulerian velocity statistics. The dynamic (Lagrangian) case is
clearly different; it bears the signature of the global dynamics of the flow.Comment: 5 pages, 3 figures, to appear in PR
Transport of magnetic field by a turbulent flow of liquid sodium
We study the effect of a turbulent flow of liquid sodium generated in the von
K\'arm\'an geometry, on the localized field of a magnet placed close to the
frontier of the flow. We observe that the field can be transported by the flow
on distances larger than its integral length scale. In the most turbulent
configurations, the mean value of the field advected at large distance
vanishes. However, the rms value of the fluctuations increases linearly with
the magnetic Reynolds number. The advected field is strongly intermittent.Comment: 4 pages, 6 figure
Capture of particles of dust by convective flow
Interaction of particles of dust with vortex convective flows is under
theoretical consideration. It is assumed that the volume fraction of solid
phase is small, variations of density due to nonuniform distribution of
particles and those caused by temperature nonisothermality of medium are
comparable. Equations for the description of thermal buoyancy convection of a
dusty medium are developed in the framework of the generalized Boussinesq
approximation taking into account finite velocity of particle sedimentation.
The capture of a cloud of dust particles by a vortex convective flow is
considered, general criterion for the formation of such a cloud is obtained.
The peculiarities of a steady state in the form of a dust cloud and backward
influence of the solid phase on the carrier flow are studied in detail for a
vertical layer heated from the sidewalls. It is shown that in the case, when
this backward influence is essential, a hysteresis behavior is possible. The
stability analysis of the steady state is performed. It turns out that there is
a narrow range of governing parameters, in which such a steady state is stable.Comment: 14 pages, 10 figures, published in Physics of Fluid
- …