15,447 research outputs found

    Impact of Dynamical Fermions on QCD Vacuum Structure

    Get PDF
    We examine how dynamical fermions affect both the UV and infrared structure of the QCD vacuum. We consider large 283×9628^3 \times 96 lattices from the MILC collaboration, using a gluonic definition of the topological charge density, founded on a new over-improved stout-link smearing algorithm. The algorithm reproduces established results from the overlap formalism and is designed to preserve nontrivial topological objects including instantons. At short distances we focus on the topological charge correlator, , where negative values at small $x$ reveal a sign-alternating layered structure to the topological-charge density of the QCD vacuum. We find that the magnitudes of the negative dip in the correlator and the positive contact term are both increased with the introduction of dynamical fermion degrees of freedom. This is in accord with expectations based on charge renormalization and the vanishing of the topological susceptibility in the chiral limit. At large distances we examine the extent to which instanton-like objects are found on the lattice, and how their distributions vary between quenched and dynamical gauge fields. We show that dynamical gauge fields contain more instanton-like objects with an average size greater than in the quenched vacuum. Finally, we directly visualize the topological charge density in order to investigate the effects of dynamical sea-quark degrees of freedom on topology.Comment: 9 pages, 8 figure

    A computational method to model radar return range in a polygonally based, computer-generated-imagery simulation

    Get PDF
    Described is a method for modeling a ground-mapping radar system for use in simulations where the terrain is in a polygonal form commonly used with computer generated imagery (CGI). The method employs a unique approach for rapidly rejecting polygons not visible to the radar to facilitate the real-time simulation of the radar return. This rapid rejection of the nonvisible polygons requires the precalculation and storage of a set of parameters that do not vary during the simulation. The calculation of a radar range as a function of the radar forward-looking angle to the CGI terrain is carried out only for the visible polygons. This method was used as part of a simulation for terrain-following helicopter operations on the vertical motion simulator at the NASA Ames Research Center. It proved to be an efficient means for returning real-time simulated radar range data

    Flight test of navigation and guidance sensor errors measured on STOL approaches

    Get PDF
    Navigation and guidance sensor error characteristics were measured during STOL approach-flight investigations. Data from some of the state sensors of a digital avionics system were compared to corresponding outputs from an inertial navigation system. These sensors include the vertical gyro, compass, and accelerometers. Barometric altimeter data were compared to altitude measured by a tracking radar. Data were recorded with the Augmentor Wing Jet STOL Research Aircraft parked and in flight

    A flight investigation of a 4D area navigation system concept for STOL aircraft in the terminal area

    Get PDF
    A digital avionics system referred to as STOLAND was test flown in the NASA CV-340 aircraft to obtain performance data for time controlled guidance in the manual flight director mode. The advanced system components installed in the cockpit included an electronic attitude director indicator and an electronic multifunction display. Navigation guidance and control computations were performed on a digital computer. A detailed 4D area navigation systems description is given. The pilot/system interface and systems operation and performance are also described. Approach flightpaths were flown which included a 180 deg turn and a 1-min, 5 deg straight-in approach to 30 m altitude, at which point go-around was initiated. Results are presented for 19 approaches

    Molecular Cloning, Functional Characterization, and Subcellular Localization of Soybean Nodule Dihydrolipoamide Reductase

    Get PDF

    User's manual: Subsonic/supersonic advanced panel pilot code

    Get PDF
    Sufficient instructions for running the subsonic/supersonic advanced panel pilot code were developed. This software was developed as a vehicle for numerical experimentation and it should not be construed to represent a finished production program. The pilot code is based on a higher order panel method using linearly varying source and quadratically varying doublet distributions for computing both linearized supersonic and subsonic flow over arbitrary wings and bodies. This user's manual contains complete input and output descriptions. A brief description of the method is given as well as practical instructions for proper configurations modeling. Computed results are also included to demonstrate some of the capabilities of the pilot code. The computer program is written in FORTRAN IV for the SCOPE 3.4.4 operations system of the Ames CDC 7600 computer. The program uses overlay structure and thirteen disk files, and it requires approximately 132000 (Octal) central memory words

    The asymmetric profile of the H76 alpha line emission from MWC349

    Get PDF
    MWC349 is an emission-line star found by Merrill, Humason and Burwell (1932). Braes, Habing and Schoenmaker (1972) discovered that it is a strong radio source. The radio emission originates in a massive ionized wind that is expanding with a velocity of about 50 km s(-1). Its continuum spectrum fits well a nu(0.6) power law from the cm wavelengths to the far-IR. Radio recombination line emission from the envelope of MWC349 was first detected by Altenhoff, Strittmatter and Wendker (1981). We have obtained good signal-to-noise ratio, Very Large Array observations of the H76 alpha radio recombination line from the ionized wind of MWC349. Our data reveal that the profile is markedly asymmetric, with a steep rise on the blue side. This asymmetry could be due to non-LTE effects in the formation and transfer of the line or to intrinsic asymmetries in the envelope. Our analysis suggests that most probably the peculiar profile is caused by a non-LTE enhancement of the line emission from the side of the envelope nearer to the observer. This asymmetry has the opposite sense than that observed in optical and IR recombination lines, where a different effect (absorption of the stellar continuum by the gas in the wind between the star and the observer) is known to be dominant, leading to the classic P Cygni profile. We propose that the profiles of the radio recombination lines from ionized stellar winds will have this characteristic shape, while optical and IR recombination lines are characterized by P Cygni-like profiles. Unfortunately, at present the detection of radio recombination lines from ionized stellar winds is only feasible for MWC349 and a few other objects

    Electron microscopic and biochemical characterization of Fraction 1 protein

    Get PDF
    High resolution electron microscopy of Fraction I protein from plant leave

    The mass ratio distribution of short period double degenerate stars

    Get PDF
    Short period double degenerates (DDs) are close white dwarf - white dwarf binary stars which are the result of the evolution of interacting binary stars. We present the first definitive measurements of the mass ratio for two DDs, WD0136+768 and WD1204+450, and an improved measurement of the mass ratio for WD0957-666. We compare the properties of the 6 known DDs with measured mass ratios to the predictions of various theoretical models. We confirm the result that standard models for the formation of DDs do not predict sufficient DDs with mass ratios near 1. We also show that the observed difference in cooling ages between white dwarfs in DDs is a useful constraint on the initial mass ratio of the binary. A more careful analysis of the properties of the white dwarf pair WD1704+481.2 leads us to conclude that the brighter white dwarf is older than its fainter companion. This is the opposite of the usual case for DDs and is caused by the more massive white dwarf being smaller and cooling faster. The mass ratio in the sense (mass of younger star)/(mass of older star) is then 1.43+-0.06 rather than the value 0.70+-0.03 given previously.Comment: Accepted for publication in MNRA

    A technique for passive attitude control of solar oriented interplanetary spacecraft

    Get PDF
    Passive damping technique for attitude control of solar orientated interplanetary spacecraf
    • …
    corecore